Review Article

Endocrine-Auditory Interactions: A Comprehensive Review of Hormonal Effects on Auditory Physiology and Pathology

Abstract

Background and Aim: Hormones have various effects on different parts of the body, and their role in the auditory system has also been confirmed. The aim of this study was to provide a comprehensive review of various studies that have been conducted on the effects of various hormones on the auditory system.
Recent Findings : Various hormones, including estrogen, progesterone, prolactin, oxytocin, aldosterone, growth hormone, dopamine, thyroxine (T4), triiodothyronine (T3), parathyroid hormone, cortisol, norepinephrine, insulin, and melatonin  play different roles in the body, including influencing the auditory system. The protective effect of estrogen, aldosterone, norepinephrine, melatonin, and oxytocin against noise, the positive effect of growth hormone on the development of hair cells, sensorineural hearing loss caused by high or low levels of thyroid hormones, low levels of parathyroid hormone, low levels of insulin, low levels of melatonin, and low levels of dopamine, tinnitus and hyperacusis in high levels of cortisol, and early-onset presbycusis in women due to the presence of prolactin.
Conclusion: This study showed that hormones play an important role in the function of the auditory system and can affect the development and maturation of auditory structures and their function. Any disruption in hormonal balance may lead to temporary or permanent changes in the auditory system.

1. Hiller-Sturmhöfel S, Bartke A. The endocrine system: an overview. Alcohol Health Res World. 1998; 22(3):153-64.
2. Morse GG, House JW. Changes in Meniere's disease responses as a function of the menstrual cycle. Nurs Res. 2001; 50(5):286-92. [DOI:10.1097/00006199-200109000-00006] [PMID]
3. Yang L, Xu Y, Zhang Y, Vijayakumar S, Jones SM, Lundberg YYW. Mechanism underlying the effects of estrogen deficiency on otoconia. J Assoc Res Otolaryngol. 2018;19(4):353-62. [DOI:10.1007/s10162-018-0666-8] [PMID]
4. Zhong S, Zhang B, Qin L, Wang Q, Luo X. Aldosterone inhibits Dot1l expression in guinea pig cochlea. Eur J Med Res. 2023; 28(1):26. [DOI:10.1186/s40001-023-00994-y] [PMID]
5. Gómez JG, Devesa J. Growth hormone and the auditory pathway: Neuromodulation and Neuroregeneration. Int J Mol Sci. 2021; 22(6):2829. [DOI:10.3390/ijms22062829] [PMID]
6. Sun H, Lin CH, Smith ME. Growth hormone promotes hair cell regeneration in the zebrafish (Danio rerio) inner ear following acoustic trauma. Plos One. 2011; 6(11):e28372. [DOI:10.1371/journal.pone.0028372] [PMID]
7. Guerra J, Devesa A, Llorente D, Mouro R, Alonso A, García-Cancela J, et al. Early treatment with growth hormone (GH) and rehabilitation recovers hearing in a child with cerebral palsy. Reports. 2019; 2(1):4. [DOI:10.3390/reports2010004]
8. Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci. 2022;23(19):11952.[DOI:10.3390/ijms231911952]
9. Seemungal BM, Gresty MA, Bronstein AM. The endocrine system, vertigo and balance. Curr Opin Neurol. 2001; 14(1):27-34. [DOI:10.1097/00019052-200102000-00005] [PMID]
10. Lakshmi A, Jain C. Effect of hormones on auditory processing abilities in females. J Indian Speech Lang Hear Assoc. 2020; 34(2):247-51. [DOI:10.4103/jisha.JISHA_16_20]
11. Hussein MM, Asal SI, Salem TM, Mohammed AM. The effect of L-thyroxine hormone therapy on hearing loss in hypothyroid patients. Egypt J Otolaryngol. 2017; 33:637-44. [DOI:10.4103/ejo.ejo_25_17]
12. El Khiati R, Tighilet B, Besnard S, Chabbert C. Vestibular disorders and hormonal dysregulations: State of the art and clinical perspectives. Cells. 2023;12(4):656. [DOI:10.3390/cells12040656] [PMID]
13. Mehrkian S, Moossavi A, Gohari N, Nazari MA, Bakhshi E, Alain C. Long latency auditory evoked potentials and object-related negativity based on harmonicity in hearing-impaired children. Neurosci Res. 2022; 178:52-9. [DOI:10.1016/j.neures.2022.01.001] [PMID]
14. Sayadi N, Azarpisheh S, Gohari N. Determining the quality of life in the elderly with high frequency hearing loss before and after hearing aid fitting. Audit Vestib Res. 2018; 27(2):111-5.
15. Gohari N, Sajadi E, Azvantash Z, Khavarghazalani B. A comparative study on the general health of the mothers of children with cochlear implant, hearing aid, and normal hearing. Audit Vestib Res. 2020. [DOI:10.18502/avr.v29i2.2793]
16. Gupta V, Dogra SS, Bansal P, Thakur K, Sharma V, Verma D, et al. Hearing impairment in patients of hypothyroidism in sub-Himalayan region. Int J Otorhinolaryngol Head Neck Surg. 2020; 6:1494-9. [DOI:10.18203/issn.2454-5929.ijohns20203202]
17. Anand VT, Mann SB, Dash RJ, Mehra YN. Auditory investigations in hypothyroidism. Acta Otolaryngol. 1989; 108(1-2):83-7. [DOI:10.3109/00016488909107396] [PMID]
18. Nedunchezhian P, Murugesan GS, Vadivel S, Mariappan V. A study on association between thyroid disorders and sensorineural hearing loss. Int J Otorhinolaryngol Head Neck Surg. 2019; (5):1315. [DOI:10.18203/issn.2454-5929.ijohns20193876]
19. Taghavi M, Afshar Kargar A, Sharifian MR. [Hearing Loss in Acquired Hypopthyroidism]. Iranian Journal of Endocrinology and Metabolism. 2009,11(1): 57-62. Persian.
20. Rovet J, Walker W, Bliss B, Buchanan L, Ehrlich R. Long-term sequelae of hearing impairment in congenital hypothyroidism. J Pediatr. 1996; 128(6):776-83. [DOI:10.1016/S0022-3476(96)70329-3] [PMID]
21. Karakus CF, Altuntaş EE, Kılıçlı F, Durmuş K, Hasbek Z. Is sensorineural hearing loss related with thyroid metabolism disorders. Indian J Otol. 2015;21(2):138-43. [DOI:10.4103/0971-7749.155310]
22. Berker D, Karabulut H, Isik S, Tutuncu Y, Ozuguz U, Erden G, et al. Evaluation of hearing loss in patients with Graves' disease. Endocrine. 2012; 41(1):116-21. [DOI:10.1007/s12020-011-9515-9] [PMID]
23. Itriyeva K. The normal menstrual cycle. Curr Probl Pediatr Adolesc Health Care. 2022; 52(5):101183. [DOI:10.1016/j.cppeds.2022.101183] [PMID]
24. Adriztina I, Adnan A, Adenin I, Haryuna SH, Sarumpaet S. Influence of hormonal changes on audiologic examination in normal ovarian cycle females: An analytic study. Int Arch Otorhinolaryngol. 2016; 20(4):294-9. [DOI:10.1055/s-0035-1566305] [PMID]
25. Arruda PO, de Castro Silva IM. Study of otoacoustic emissions during the female hormonal cycle. Braz J Otorhinolaryngol. 2008; 74(1):106-11. [DOI:10.1016/S1808-8694(15)30759-X] [PMID]
26. Stenberg AE, Wang H, Fish J 3rd, Schrott-Fischer A, Sahlin L, Hultcrantz M. Estrogen receptors in the normal adult and developing human inner ear and in Turner's syndrome. Hear Res. 2001; 157(1-2):87-92. [DOI:10.1016/S0378-5955(01)00280-5] [PMID]
27. Alanazi SAA, Alatawi AME, Alhwaiti A, Alrashidi ASA, Alanazi G, Alfaqiri M, et al. Overview on hormonal replacement therapy in menopause. J Pharm Res Int. 2021; 33(39A):141-7. [DOI:10.9734/jpri/2021/v33i39A32152]
28. Kilicdag EB, Yavuz H, Bagis T, Tarim E, Erkan AN, Kazanci F. Effects of estrogen therapy on hearing in postmenopausal women. Am J Obstet Gynecol. 2004; 190(1):77-82. [DOI:10.1016/j.ajog.2003.06.001] [PMID]
29. Guimaraes P, Frisina ST, Mapes F, Tadros SF, Frisina DR, Frisina RD. Progestin negatively affects hearing in aged women. Proc Natl Acad Sci U S A. 2006 ; 103(38):14246-9. [DOI:10.1073/pnas.0606891103] [PMID]
30. Caruso S, Cianci A, Grasso D, Agnello C, Galvani F, Maiolino L, et al. Auditory brainstem response in postmenopausal women treated with hormone replacement therapy: A pilot study. Menopause. 2000; 7(3):178-83. [DOI:10.1097/00042192-200007030-00008] [PMID]
31. Yang H, Li J, Sun X, Li W, Wang Y, Huang C. The association of sex steroid hormone concentrations with hearing loss: a cross-sectional study. Acta Otolaryngol. 2023; 143(7):582-8. [DOI:10.1080/00016489.2023.2224398] [PMID]
32. Sajadian M, Jalilvand H, Mohammadzadeh A, Tabatabaee SM, Gohari N, Sajadian M. Evaluation of auditory verbal working memory performance of 50-59 year old menopause women with normal hearing. Scientific J Rehabil Med. 2019;8(2):191-9. [DOI:10.22037/JRM.2019.111373.1947]
33. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017; 125(Pt A):21-38. [DOI:10.1016/j.phrs.2017.06.005] [PMID]
34. Pichaitanaporn J, Dara R. Age-related hearing loss and Aldosterone Treatment. Ramathibodi Med J. 2023; 46(1):57-65. [DOI:10.33165/rmj.2023.46.1.260290]
35. Tadros SF, Frisina ST, Mapes F, Frisina DR, Frisina RD. Higher serum aldosterone correlates with lower hearing thresholds: a possible protective hormone against presbycusis. Hear Res. 2005; 209(1-2):10-8. [DOI:10.1016/j.heares.2005.05.009] [PMID]
36. Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel). 2023; 13(7):1223. [DOI:10.3390/ani13071223] [PMID]
37. Halonen J, Hinton AS, Frisina RD, Ding B, Zhu X, Walton JP. Long-term treatment with aldosterone slows the progression of age-related hearing loss. Hear Res. 2016; 336:63-71. [DOI:10.1016/j.heares.2016.05.001] [PMID]
38. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019; 15(9):525-34. [DOI:10.1038/s41574-019-0228-0] [PMID]
39. Emami SF. The effects of stress on auditory system: A narrative review. Egypt J Otolaryngol. 2024; 40(1):39. [DOI:10.1186/s43163-024-00599-0]
40. Hébert S, Paiement P, Lupien SJ. A physiological correlate for the intolerance to both internal and external sounds. Hear Res. 2004; 190(1-2):1-9. [DOI:10.1016/S0378-5955(04)00021-8] [PMID]
41. Tian C, Yang Y, Wang R, Li Y, Sun F, Chen J, et al. Norepinephrine protects against cochlear outer hair cell damage and noise-induced hearing loss via α(2A)-adrenergic receptor. BMC Neurosci. 2024; 25(1):5. [DOI:10.1186/s12868-024-00845-4] [PMID]
42. Hall JE, Hall ME. Guyton and Hall Textbook of Medical Physiology E-Book. Amsterdam: Elsevier Health Sciences; 2020. [Link]
43. Todd JA. Etiology of type 1 diabetes. Immunity. 2010; 32(4):457-67. [DOI:10.1016/j.immuni.2010.04.001] [PMID]
44. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010; 464(7293):1293-300. [DOI:10.1038/nature08933] [PMID]
45. Or Koca A, Koca HS, Anil C. The effects of hyperinsulinemia on cochlear functions. Noise Health. 2020; 22(106):70-6. [DOI:10.4103/nah.NAH_41_20] [PMID]
46. Okhovat SA, Moaddab MH, Okhovat SH, Al-Azab AAA, Saleh FAA, Oshaghi S, et al. Evaluation of hearing loss in juvenile insulin dependent patients with diabetes mellitus. J Res Med Sci. 2011;16(2):179-83. [PMID]
47. Al-Rubeaan K, AlMomani M, AlGethami AK, Darandari J, Alsalhi A, AlNaqeeb D, et al. Hearing loss among patients with type 2 diabetes mellitus: A cross-sectional study. Ann Saudi Med. 2021; 41(3):171-8. [DOI:10.5144/0256-4947.2021.171] [PMID]
48. Sachdeva K, Azim S. Sensorineural hearing loss and type II diabetes mellitus. Int J Otorhinolaryngol Head Neck Surg. 2018; 4(2):499-507. [DOI:10.18203/issn.2454-5929.ijohns20180714]
49. Das A, Sumit AF, Ahsan N, Kato M, Ohgami N, Akhand AA. Impairment of extra-high frequency auditory thresholds in subjects with elevated levels of fasting blood glucose. J Otol. 2018; 13(1):29-35. [DOI:10.1016/j.joto.2017.10.003] [PMID]
50. Chang N, Chien C, Hsieh M, Lin W, Ho K. The association of insulin resistance and metabolic syndrome with age-related hearing loss. J Diabetes Metab. 2014; 5:10. [DOI:10.4172/2155-6156.1000440]
51. Serra LSM, Araújo JGd, Vieira ALS, Silva EMd, Andrade RRd, Kückelhaus SAS, et al. Role of melatonin in prevention of age-related hearing loss. PLoS One. 2020; 15(2):e0228943. [DOI:10.1371/journal.pone.0228943] [PMID]
52. Baki A, ÖZER ÖF, Yildiz M, KÖKTAŞOĞLU F. Serum Melatonin Levels in Patients with Sudden Sensorineural Hearing Loss. Bezmialem Sci. 2020; 8(3):269-74. [DOI:10.14235/bas.galenos.2019.3459]
53. Song J, Ouyang F, Xiong Y, Luo Q, Jiang H, Fan L, et al. Reassessment of oxidative stress in idiopathic sudden hearing loss and preliminary exploration of the effect of physiological concentration of melatonin on prognosis. Front Neurol. 2023; 14:1249312. [DOI:10.3389/fneur.2023.1249312] [PMID]
54. Tanriverdi F, Yapislar H, Karaca Z, Unluhizarci K, Suer C, Kelestimur F. Evaluation of cognitive performance by using P300 auditory event related potentials (ERPs) in patients with growth hormone (GH) deficiency and acromegaly. Growth Horm IGF Res. 2009; 19(1):24-30. [DOI:10.1016/j.ghir.2008.05.002] [PMID]
55. Muus JS, Weir FW, Kreicher KL, Bowlby DA, Discolo CM, Meyer TA. Hearing loss in children with growth hormone deficiency. Int J Pediatr Otorhinolaryngol. 2017; 100:107-13. [DOI:10.1016/j.ijporl.2017.06.037] [PMID]
56. Saleem M, Martin H, Coates P. Prolactin biology and laboratory measurement: An update on physiology and current analytical issues. Clin Biochem Rev. 2018; 39(1):3-16. [PMID]
57. Horner KC, Cazals Y, Guieu R, Lenoir M, Sauze N. Experimental estrogen-induced hyperprolactinemia results in bone-related hearing loss in the guinea pig. Am J Physiol Endocrinol Metab. 2007; 293(5):E1224-32. [DOI:10.1152/ajpendo.00279.2007] [PMID]
58. Marano RJ, Tickner J, Redmond SL. Prolactin expression in the cochlea of aged BALB/c mice is gender biased and correlates to loss of bone mineral density and hearing loss. PLoS One. 2013; 8(5):e63952. [DOI:10.1371/journal.pone.0063952] [PMID]
59. Harris S, Afram R, Shimano T, Fyk-Kolodziej B, Walker PD, Braun RD, et al. Dopamine in auditory nuclei and lemniscal projections is poised to influence acoustic integration in the inferior colliculus. Front Neural Circuits. 2021; 15:624563. [DOI:10.3389/fncir.2021.624563] [PMID]
60. Garasto E, Stefani A, Pierantozzi M, Cerroni R, Conti M, Maranesi S, et al. Association between hearing sensitivity and dopamine transporter availability in Parkinson's disease. Brain Commun. 2023; 5(2):fcad075. [DOI:10.1093/braincomms/fcad075] [PMID]
61. Wu JS, Yi E, Manca M, Javaid H, Lauer AM, Glowatzki E. Sound exposure dynamically induces dopamine synthesis in cholinergic LOC efferents for feedback to auditory nerve fibers. Elife. 2020; 9:e52419. [DOI:10.7554/eLife.52419] [PMID]
62. Acevedo-Rodriguez A, Mani SK, Handa RJ. Oxytocin and estrogen receptor β in the brain: An overview. Front Endocrinol (Lausanne). 2015; 6:160. [DOI:10.3389/fendo.2015.00160] [PMID]
63. Akin Ocal FC, Kesici GG, Gurgen SG, Ocal R, Erbek S. The effect of intratympanic oxytocin treatment on rats exposed to acoustic trauma. J Laryngol Otol. 2019; 133(6):466-76. [DOI:10.1017/S0022215119001014] [PMID]
64. Suarez-Bregua P, Cal L, Cañestro C, Rotllant J. PTH reloaded :A new evolutionary perspective. Front Physiol. 2017; 8:776. [DOI:10.3389/fphys.2017.00776] [PMID]
65. Fraser WD. Hyperparathyroidism. Lancet. 2009; 374(9684):145-58. [DOI:10.1016/S0140-6736(09)60507-9] [PMID]
66. Bilezikian JP, Cusano NE, Khan AA, Liu JM, Marcocci C, Bandeira F. Primary hyperparathyroidism. Nat Rev Dis Primers. 2016; 2:16033. [DOI:10.1038/nrdp.2016.33] [PMID]
67. Djian C, Berkenou J, Rothenbuhler A, Botton J, Linglart A, Nevoux J. Prevalence of hearing loss in pseudohypoparathyroidism. Orphanet J Rare Dis. 2024; 19(1):339. [DOI:10.1186/s13023-024-03299-3] [PMID]
68. Döneray H, Usui T, Kaya A, Dönmez AS. The first Turkish case of hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome. J Clin Res Pediatr Endocrinol. 2015; 7(2):140-3. [DOI:10.4274/jcrpe.1874]
Files
IssueArticles in Press QRcode
SectionReview Article(s)
Keywords
Auditory system hormone endocrine glands

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Gohari N, Ghasemi S, khoshfetrat H. Endocrine-Auditory Interactions: A Comprehensive Review of Hormonal Effects on Auditory Physiology and Pathology. Aud Vestib Res. 2025;.