Auditory and Vestibular Research 2018. 27(2):80-85.

Vestibular evoked myogenic potentials: early predictors of Alzheimer’s disease?
Nahid Shamsi, Mansoureh Adel Ghahraman, Reza Hoseinabadi, Vajiheh Aghamollaii, Shohreh Jalaie


Background and Aim: Recent studies have reported connections between vestibular function and cognition and also reported more prevalence of vestibular impairment in patients with Alzheimer's disease. Because patients with amnestic mild cognitive impairment (aMCI) are more likely to develop Alzheimer's disease, this study was conducted to evaluate vestibular dysfunction of otolith organs in aMCI patients compared to normal subjects.
Methods: In our case-control study, 11 patients (22 ears) with aMCI with mean age of 56.73±8.83 years and 11 normal participants (22 ears) with mean age of 54.30±7.4 years were eva­luated for ocular and cervical vestibular evoked myogenic potentials (o- and cVEMP). Occurrence of VEMP responses, amplitude, latency and threshold of these waves were recorded and compared between the two groups.
Results: Ocular VEMP was absent in 63.6% of aMCI patients and in 18.2% of the normal group. The difference was significant (p=0.002), while occurrence rate, amplitude, latencies and threshold of cVEMP were not significantly different between the two groups (p>0.05). McNemar's test showed that there was no significant relationship between occurrences of two potentials in aMCI group.
Conclusion: These findings show the presence of vestibular dysfunction, especially in the pathways of ocular vestibular evoked potential, in patients with amnestic mild cognitive impairment. Given that previous studies have shown that cVEMP was absent in Alzheimer's disease, absence of oVEMP can be used as an indicator for predicting future impairment in individuals with amnestic MCI.


Vestibular evoked myogenic potential; vestibular system; cognition; mild cognitive impairment

Full Text:



Previc FH. Vestibular loss as a contributor to Alzheimer's disease. Med Hypotheses. 2013;80(4):360-7. doi: 10.1016/j.mehy.2012.12.023

Hitier M, Besnard S, Smith PF. Vestibular pathways involved in cognition. Front Integr Neurosci. 2014;8:59. doi: 10.3389/fnint.2014.00059

Black FO, Pesznecker S, Stallings V. Permanent gentamicin vestibulotoxicity. Otol Neurotol. 2004;25(4):559-69.

Gurvich C, Maller JJ, Lithgow B, Haghgooie S, Kulkarni J. Vestibular insights into cognition and psychiatry. Brain Res. 2013;1537:244-59. doi: 10.1016/j.brainres.2013.08.058

Previc FH, Krueger WW, Ross RA, Roman MA, Siegel G. The relationship between vestibular function and topographical memory in older adults. Front Integr Neurosci. 2014;8:46. doi: 10.3389/fnint.2014.00046

Smith PF. Vestibular-hippocampal interactions. Hippocampus. 1997;7(5):465-71. doi: 10.1002/(SICI)1098-1063(1997)7:5<465::AID-HIPO3>3.0.CO;2-G

Birdane L, Incesulu A, Gurbuz MK, Ozbabalik D. Sacculocolic reflex in patients with dementia: is it possible to use it for early diagnosis? Neurol Sci. 2012;33(1):17-21. doi: 10.1007/s10072-011-0595-3

Harun A, Oh ES, Bigelow RT, Studenski S, Agrawal Y. Vestibular impairment in dementia. Otol Neurotol. 2016;37(8):1137-42. doi: 10.1097/MAO.0000000000001157

Petersen RC. Mild cognitive impairment. Continuum (Minneap Minn). 2016;22(2 Dementia):404-18. doi: 10.1212/CON.0000000000000313

Pandya SY, Clem MA, Silva LM, Woon FL. Does mild cognitive impairment always lead to dementia? A review. J Neurol Sci. 2016;369:57-62. doi: 10.1016/j.jns.2016.07.055

Busse A, Hensel A, Gühne U, Angermeyer MC, Riedel-Heller SG. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology. 2006;67(12):2176-85. doi: 10.1212/01.wnl.0000249117.23318.e1

Fang ML, Coatta K, Badger M, Wu S, Easton M, Nygård L, et al. Informing understandings of mild cognitive impairment for older adults: implications from a scoping review. J Appl Gerontol. 2017;36(7):808-39. doi: 10.1177/0733464815589987

Kondo D, Ota K, Kasanuki K, Fujishiro H, Chiba Y, Murayama N, et al. Characteristics of mild cognitive impairment tending to convert into Alzheimer's disease or dementia with Lewy bodies: A follow-up study in a memory clinic. J Neurol Sci. 2016;369:102-108. doi: 10.1016/j.jns.2016.08.011

Nakamagoe K, Fujimiya S, Koganezawa T, Kadono K, Shimizu K, Fujizuka N, et al. Vestibular function impairment in Alzheimer's disease. J Alzheimers Dis. 2015;47(1):185-96. doi: 10.3233/JAD-142646

Scheltens P, Blennow K, Breteler MM, de Strooper B4, Frisoni GB, Salloway S, et al. Alzheimer's disease. Lancet. 2016;388(10043):505-17. doi: 10.1016/S0140-6736(15)01124-1

Heide G, Luft B, Franke J, Schmidt P, Witte OW, Axer H. Brainstem representation of vestibular evoked myogenic potentials. Clin Neurophysiol. 2010;121(7):1102-8. doi: 10.1016/j.clinph.2010.02.007

Sanyelbhaa H, Sanyelbhaa A. Vestibular-evoked myogenic potentials and subjective visual vertical testing in patients with vitamin D deficiency/insufficiency. Eur Arch Otorhinolaryngol. 2015;272(11):3233-9. doi: 10.1007/s00405-014-3395-6

McCaslin DL, Jacobson GP. Vestibular-evoked myogenic potentials (VEMPs). In: Jacobson GP, Shepard NT, editors. Balance function assessment and management. 2nd ed. San Diego, CA: Plural Publishing; 2016. p. 533-79.

Bidelman GM, Lowther JE, Tak SH, Alain C. Mild cognitive impairment is characterized by deficient brainstem and cortical representations of speech. J Neurosci. 2017;37(13):3610-3620. doi: 10.1523/JNEUROSCI.3700-16.2017

Shin BM, Han SJ, Jung JH, Kim JE, Fregni F. Effect of mild cognitive impairment on balance. J Neurol Sci. 2011;305(1-2):121-5. doi: 10.1016/j.jns.2011.02.031


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.