Study Protocol

Impact of Combined Bifrontal Transcranial Direct-Current Stimulation and Conflict Processing Training on Tinnitus: A Protocol for Single-Blind Randomized Controlled Trial


Background and Aim: The deficit in cognitive functions and central executive function is one of the popular hypotheses on the underlying cause of tinnitus. These factors are not only the complications of tinnitus but are also involved in the generation of it. In this study, bifrontal transcranial Direct Current Stimulation (tDCS) and conflict processing will be used in the form of auditory Stroop training to improve cognitive performance and inhibition control for tinnitus management.
Methods: This study will be carried out on 34 chronic tinnitus patients. The initial evaluations include the tinnitus psychoacoustic evaluations, determination of the tinnitus handicap through tinnitus handicap inventory, and examining the annoyance and loudness of tinnitus through the visual analog scale after which the participants will be investigated in two groups. The first group will receive sessions of tDCS followed by six sessions of conflict processing training. The second group will first receive tDCS in the form of sham, to be followed by six sessions of auditory Stroop. The evaluations will be repeated after each intervention.
Discussion: Studies have shown that successive sessions of conflict processing training can enhance cognitive plasticity and inhibition function. As conflict processing training has not been addressed as rehabilitation training in the people suffering from tinnitus, these processes will be designed in four tasks as rehabilitation exercises in Farsi language and applied along with tDCS to the people with chronic tinnitus to decrease and control tinnitus by improving cognitive and inhibition control.
Trial registration: Iranian Registry of Clinical Trials (IRCT20120215009014N366) on Sep 17th, 2020.

[1] Asnis GM, Henderson MA, Thomas M, Kiran M, De La GR. Insomnia in tinnitus patients: a prospective study finding a significant relationship. Int Tinnitus J. 2021;24(2):65-9.
[2] Mahafza N, Zhao F, El Refaie A, Chen F. A comparison of the severity of tinnitus in patients with and without hearing loss using the tinnitus functional index (TFI). Int J Audiol. 2021;60(3):220-6. [DOI:10.1080/14992027.2020.1804081]
[3] Santos AdHM, Santos APS, Santos HS, de Silva AC. The use of tDCS as a therapeutic option for tinnitus: a sys- tematic review. Braz J Otorhinolaryngol. 2018;84(5):653-9. [DOI:10.1016/j.bjorl.2018.02.003]
[4] Elmoazen D, Kozou H, Elabassiery B. Otoacoustic emissions and contralateral suppression in tinnitus sufferers with nor- mal hearing. Egypt J Otolaryngol. 2020;36:29. [DOI:10.1186/ s43163-020-00030-4]
[5] Baars BJ. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res. 2005;150:45-53. [DOI:10.1016/S0079-6123(05)50004-9]
[6] De Ridder D, Vanneste S, Langguth B, Llinas R. Thalamo- cortical dysrhythmia: a theoretical update in tinnitus. Front Neurol. 2015;6:124. [DOI:10.3389/fneur.2015.00124]
[7] Baguley D, Andersson G, McFerran D, McKenna L. Tinni- tus: A multidisciplinary approach. 2nd ed. Chichester: John Wiley & Sons; 2013. [DOI:10.1002/9781118783009]
[8] Husain FT, Schmidt SA. Using resting state functional connectivity to unravel networks of tinnitus. Hear Res. 2014;307:153-62. [DOI:10.1016/j.heares.2013.07.010]
[9] Vanneste S, Plazier M, Ost J, van der Loo E, Van de Heyning P, De Ridder D. Bilateral dorsolateral prefrontal cortex modu- lation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res. 2010;202(4):779-85. [DOI:10.1007/s00221-010-2183-9]
[10] Forogh B, Mirshaki Z, Raissi GR, Shirazi A, Mansoori K, Ahadi T. Repeated sessions of transcranial direct current stimulation for treatment of chronic subjective tinnitus: a pi- lot randomized controlled trial. Neurol Sci. 2016;37(2):253-9. [DOI:10.1007/s10072-015-2393-9]
[11] Langguth B, Schecklmann M, Lehner A, Landgrebe M, Poeppl TB, Kreuzer PM, et al. Neuroimaging and neuro- modulation: complementary approaches for identifying the neuronal correlates of tinnitus. Front Syst Neurosci. 2012;6:15. [DOI:10.3389/fnsys.2012.00015]
[12] Trevis KJ, McLachlan NM, Wilson SJ. Cognitive mecha- nisms in chronic tinnitus: psychological markers of a failure to switch attention. Front Psychol. 2016;7:1262. [DOI:10.3389/ fpsyg.2016.01262]
[13] Zenner HP, Pfister M, Birbaumer N. Tinnitus sensi- tization: sensory and psychophysiological aspects of a new pathway of acquired centralization of chronic tinni- tus. Otol Neurotol. 2006;27(8):1054-63. [DOI:10.1097/01. mao.0000231604.64079.77]
[14] Araneda R, Renier L, Dricot L, Decat M, Ebner-Karestinos D, Deggouj N, et al. A key role of the prefrontal cortex in the maintenance of chronic tinnitus: An fMRI study using a Stroop task. Neuroimage Clin. 2017;17:325-34. [DOI:10.1016/j. nicl.2017.10.029]
[15] Dondé C, Brevet-Aeby C, Poulet E, Mondino M, Brune- lin J. Potential impact of bifrontal transcranial random noise stimulation (tRNS) on the semantic Stroop effect and its rest- ing-state EEG correlates. Neurophysiol Clin. 2019;49(3):243-8. [DOI:10.1016/j.neucli.2019.03.002]
[16] Gregg MK, Purdy KA. Graded auditory Stroop effects gen- erated by gender words. Percept Mot Skills. 2007;105(2):549- 55. [DOI:10.2466/pms.105.2.549-555]
[17] Wilkinson AJ, Yang L. Plasticity of inhibition in older adults: retest practice and transfer effects. Psychol Aging. 2012;27(3):606-15. [DOI:10.1037/a0025926]
[18] Haupt S, Axmacher N, Cohen MX, Elger CE, Fell J. Activa- tion of the caudal anterior cingulate cortex due to task‐related interference in an auditory Stroop paradigm. Hum Brain Mapp. 2009;30(9):3043-56. [DOI:10.1002/hbm.20731]
[19] Christensen TA, Lockwood JL, Almryde KR, Plante E. Neural substrates of attentive listening assessed with a nov- el auditory Stroop task. Front Hum Neurosci. 2011;4:236. [DOI:10.3389/fnhum.2010.00236]
[20] Roberts KL, Hall DA. Examining a supramodal network for conflict processing: a systematic review and novel func- tional magnetic resonance imaging data for related visual and auditory stroop tasks. J Cogn Neurosci. 2008;20(6):1063-78. [DOI:10.1162/jocn.2008.20074]
[21] Sallard E, Mouthon M, De Pretto M, Spierer L. Modulation of inhibitory control by prefrontal anodal tDCS: A crosso- ver double-blind sham-controlled fMRI study. PLoS One. 2018;13(3):e0194936. [DOI:10.1371/journal.pone.0194936]
[22] Loftus AM, Yalcin O, Baughman FD, Vanman EJ, Hag- ger MS. The impact of transcranial direct current stimula- tion on inhibitory control in young adults. Brain Behav. 2015;5(5):e00332. [DOI:10.1002/brb3.332]
[23] Castro-Meneses LJ, Johnson BW, Sowman PF. Vocal re- sponse inhibition is enhanced by anodal tDCS over the right prefrontal cortex. Exp Brain Res. 2016;234(1):185-95. [DOI:10.1007/s00221-015-4452-0]
[24] Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimula- tion is associated with increased attention. BMC Neurosci. 2012;13:108. [DOI:10.1186/1471-2202-13-108]
[25] Oldrati V, Colombo B, Antonietti A. Combination of a short cognitive training and tDCS to enhance visuospa- tial skills: A comparison between online and offline neuro- modulation. Brain Res. 2018;1678:32-9. [DOI:10.1016/j.brain- res.2017.10.002]
[26] Faber M, Vanneste S, Fregni F, De Ridder D. Top down prefrontal affective modulation of tinnitus with multiple ses- sions of tDCS of dorsolateral prefrontal cortex. Brain Stimul. 2012;5(4):492-8. [DOI:10.1016/j.brs.2011.09.003]
[27] Araneda R, De Volder AG, Deggouj N, Renier L. Altered inhibitory control and increased sensitivity to cross-modal interference in tinnitus during auditory and visual tasks. PLoS One. 2015;10(3):e0120387. [DOI:10.1371/journal. pone.0120387]
[28] Knight RT, Scabini D, Woods DL. Prefrontal cortex gating of auditory transmission in humans. Brain Res. 1989;504(2):338- 42. [DOI:10.1016/0006-8993(89)91381-4]
[29] Lee HY, Choi MS, Chang DS, Cho C-S. Combined bifron- tal transcranial direct current stimulation and tailor-made notched music training in chronic tinnitus. J Audiol Otol. 2017;21(1):22-7. [DOI:10.7874/jao.2017.21.1.22]
[30] Teismann H, Wollbrink A, Okamoto H, Schlaug G, Rudack C, Pantev C. Combining transcranial direct current stimula- tion and tailor-made notched music training to decrease tinni- tus-related distress-a pilot study. PLoS One. 2014;9(2):e89904. [DOI:10.1371/journal.pone.0089904]
[31] Tyler RS, Noble W, Coelho C, Roncancio ER, Jun HJ. Tin- nitus and hyperacusis In: Katz J, editor. Handbook of clini- cal audiology. 7th ed. Lippincott Williams & Wilkins;2015.p. 647-758.
[32] Mahmoudian S, Shahmiri E, Rouzbahani M, Jafari Z, Key- hani MR, Rahimi F, et al. Persian language version of the” Tinnitus Handicap Inventory”: translation, standardization, validity and reliability. Int Tinnitus J. 2011;16(2):93-103.
[33] De Ridder D, Vanneste S. EEG driven tDCS versus bifrontal tDCS for tinnitus. Front Psychiatry. 2012;3:84. [DOI:10.3389/ fpsyt.2012.00084]
[34] Talanow T, Ettinger U. Effects of task repetition but no transfer of inhibitory control training in healthy adults. Acta Psychol (Amst). 2018;187:37-53. [DOI:10.1016/j.actp- sy.2018.04.016]
[35] Vanneste S, Walsh V, Van De Heyning P, De Ridder D. Comparing immediate transient tinnitus suppression using tACS and tDCS: a placebo-controlled study. Exp Brain Res. 2013;226(1):25-31. [DOI:10.1007/s00221-013-3406-7]
IssueVol 31 No 2 (2022) QRcode
SectionStudy Protocol
Tinnitus conflict processing Stroop training inhibition

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Emadi M, Akbari M, Moossavi A, Jalaie S, Toufan R. Impact of Combined Bifrontal Transcranial Direct-Current Stimulation and Conflict Processing Training on Tinnitus: A Protocol for Single-Blind Randomized Controlled Trial. Aud Vestib Res. 2022;31(2):141-147.