Research Article

Evaluation of Cochlear Synaptopathy in Tinnitus Patients with Normal Hearing Using Auditory Brainstem Response and Electrocochleography Tests

Abstract

Background and Aim: Tinnitus is defined a phantom sound percept. Few studies have examined the occurrence of synaptopathy in tinnitus patients utilizing a battery of tests that indicate synaptopathy. This study aimed to investigate the role of synaptopathy in tinnitus production and compare the various characteristics of the auditory brainstem response (ABR) test and electrocochleography (ECochG) in normal-hearing people with and without tinnitus.
Methods: This cross-sectional study was conducted on 34 normal-hearing individuals, 20 without tinnitus as controls (11 females and 9 males) and 14 with tinnitus (8 females and 6 men). The test components (amplitude, growth and slope of wave I, V/I ratio, action potential (AP) amplitude, and summating potential (SP)/AP) ratio were recorded during the ABR and ECochG tests for each subject.
Results: The control group had higher mean values of amplitude, growth and slope of wave I, and AP amplitude compared to the tinnitus group, and this difference was statistically significant (p<0.05). The mean V/I ratio and SP/AP ratio were lower in the control group than in the tinnitus group, and this difference was statistically significant (p<0.05).
Conclusion: The significant difference in the parameters of ABR and ECochG tests between normal-hearing people with and without tinnitus indicates that these parameters can be used to evaluate the presence of synaptopathy in tinnitus patients. These findings suggest the need for proper interpretation of the results of ABR and ECochG tests in tinnitus patients with a focus on the parameters indicating synaptopathy.

[1] Stouffer JL, Tyler RS. Characterisation of tinnitus by tinnitus patients. J Speech Hear Disord. 1990;55(3):439-53. [DOI:10.1044/jshd.5503.439]
[2] Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31(38):13452-7. [DOI:10.1523/
JNEUROSCI.2156-11.2011]
[3] Kim D-K, Park S-N, Kim HM, Son HR, Kim N-G, Park K-H, et al. Prevalence and significance of high-frequency hearing loss in subjectively normalhearing patients with tinnitus. Ann Otol Rhinol Laryngol. 2011;120(8):523-8. [DOI:10.1177/000348941112000806]
[4] McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hear Res. 2016;337:70-9. [DOI:10.1016/j.heares.2016.05.009]
[5] Demeester K, van Wieringen A, Hendrickx JJ, Topsakal V, Fransen E, Van Laer L, et al. Prevalence of tinnitus and audiometric shape. B-ENT. 2007;3 Suppl 7:37-49.
[6] Dauman, R., Bouscau-Faure F. Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol. 2005;125(5):503-9. [DOI:10.1080/00016480510027565]
[7] Pinto PC, Sanchez TG, Tomita S. The impact of gender, age and hearing loss on tinnitus severity. Braz J Otorhinolaryngol. 2010;76(1):18-24. [DOI:10.1590/S1808-86942010000100004]
[8] Norena AJ, Farley BJ. Tinnitus-related neural activity: theories of generation, propagation, and centralization. Hear Res. 2013;295:161-71. [DOI:10.1016/j.heares.2012.09.010]
[9] Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci. 2010;30(45):14972-9. [DOI:10.1523/JNEUROSCI.4028-10.2010]
[10] Kinpper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol. 2013;111:17-33. [DOI:10.1016/j.pneurobio.2013.08.002]
[11] Zeng FG. An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res. 2013;295:172-9. [DOI:10.1016/j.heares.2012.05.009]
[12] Shulman A, Goldstein B. Principles of tinnitology: tinnitus diagnosis and treatment a tinnitus targeted therapy. Int Tinnitus J. 2010;16(1):73-85.
[13] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077-85. [DOI:10.1523/JNEUROSCI.2845-09.2009]
[14] Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, et al. Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci. 2016;36(13):3755-64. [DOI:10.1523/JNEUROSCI.4460-15.2016]
[15] Shim HJ, An Y-H, Kim DH, Yoon JE, Yoon JH. Comparisons of auditory brainstem response and sound level tolerance in tinnitus ears and non-tinnitus ears in unilateral tinnitus patients with normal audiograms. PLoS One. 2017;12(12):e0189157. [DOI:10.1371/journal.pone.0189157]
[16] Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a differential diagnosis of hidden hearing loss in humans. PLoS One. 2016;11(9):e0162726. [DOI:10.1371/journal.pone.0162726]
[17] Barbee CM, James JA, Park JH, Smith EM, Johnson CE, Clifton S, et al. Effectiveness of auditory measures for detecting hidden hearing loss and/or cochlear synaptopathy: a systematic review. Semin Hear. 2018;39(2):172-209. [DOI:10.1055/s-0038-1641743]
[18] Gopal KV, Daly DM, Daniloff RG, Pennartz L. Effects of selective serotonin reuptake inhibitors on auditory processing: case study. J Am Acad Audiol. 2000;11(8):454-63.
[19] Bartels H, Staal MJ, Albers FWJ. Tinnitus and neural plasticity of the brain. Otol Neurotol. 2007;28(2):178-84. [DOI:10.1097/MAO.0b013e31802b3248]
[20] Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110(3):577-86. [DOI:10.1152/jn.00164.2013]
[21] Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol. 2014;111(3):552-64. [DOI:10.1152/jn.00184.2013]
[22] Gu JW, Herrmann BS, Levine RA, Melcher JR. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol. 2012;13(6):819-33. [DOI:10.1007/s10162-012-0344-1]
[23] Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC. Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci. 2010;30(22):7587-97. [DOI:10.1523/JNEUROSCI.0389-10.2010]
Files
IssueVol 31 No 1 (2022) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v31i1.8128
Keywords
Tinnitus synaptopathy auditory brainstem response electrocochleography normal hearing

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ahmadpour T, Toufan R, Pourbakht A, Kamali M. Evaluation of Cochlear Synaptopathy in Tinnitus Patients with Normal Hearing Using Auditory Brainstem Response and Electrocochleography Tests. Aud Vestib Res. 2022;31(1):4-10.