Assessment of Distortion Product Otoacoustic Emissions Input-Output Function in Individuals with and without Musical Abilities
Abstract
Background and Aim: Musical training has shown to bring about superior performance in several auditory and non-auditory tasks compared to those without musical exposure. Distortion product otoacoustic emissions (DPOAE) input-output function can be an indicator of the non-linear functioning of the cochlea. The objective of this study was to evaluate and compare the differences in the slope of DPOAE input-output function in individuals with and without musical abilities.
Methods: Twenty normal-hearing individuals were considered in the age range of 18–25 years. They were divided based on the scores obtained on the questionnaire of musical abilities, as individuals with and without musical abilities. DPOAE input-output function was done for each of the two groups. The slope of the DPOAE input-output function was compared at different frequencies between the groups.
Results: The results of the Mann Whitney test revealed that the slope was significantly steeper at 2000, 3000, 4000 and 6000 Hz in individuals with musical abilities. There was no significant difference in slope at 1000 and 1500 Hz.
Conclusion: The increased steepness of the slope indicates a relatively better functioning of the cochlea in individuals with musical abilities. The enhanced perception of music may induce changes in the cochlea resulting in a better appreciation of music.
[2] Kazkayasi M, Yetiser S, Ozcelik S. Effect of musical training on musical perception and hearing sensitivity: conventional and high-frequency audiometric comparison. J Otolaryngol. 2006;35(5):343-8. [DOI:10.2310/7070.2005.0092]
[3] Marozeau J, Innes-Brown H, Blamey PJ. The effect of timbre and loudness on melody segregation. Music Perception: An Interdisciplinary Journal. 2013;30(3):259-74. [DOI:10.1525/mp.2012.30.3.259]
[4] Bidelman GM, Schug JM, Jennings SG, Bhagat SP. Psychophysical auditory filter estimates reveal sharper cochlear tuning in musicians. J Acoust Soc Am. 2014;136(1):EL33-9. [DOI:10.1121/1.4885484]
[5] Micheyl C, Khalfa S, Perrot X, Collet L. Difference in cochlear efferent activity between musicians and non-musicians. Neuroreport. 1997;8(4):1047-50. [DOI:10.1097/00001756-199703030-00046]
[6] Barry JG, Weiss B, Sabisch B. Psychophysical estimates of frequency discrimination: More than just limitations of auditory processing. Brain Sci. 2013;3(3):1023-42. [DOI:10.3390/brainsci3031023]
[7] Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear Hear. 2009;30(6):653-61. [DOI:10.1097/AUD.0b013e3181b412e9]
[8] Tierney A, Kraus N. Music training for the development of reading skills. Prog Brain Res. 2013;207:209-41. [DOI:10.1016/B978-0-444-63327-9.00008-4]
[9] Lovett MC, Anderson JR. Effects of solving related proofs on memory and transfer in geometry problem solving. J Exp Psychol Learn Mem Cogn. 1994;20(2):366-78. [DOI:10.1037//0278-7393.20.2.366]
[10] Schellenberg EG. Long-term positive associations between music lessons and IQ. J Educ Psychol. 2006;98(2):457-68. [DOI:10.1037/0022-0663.98.2.457]
[11] Hannon EE, Trainor LJ. Music acquisition: effects of enculturation and formal training on development. Trends Cogn Sci. 2007;11(11):466-72. [DOI:10.1016/j.tics.2007.08.008]
[12] Fujioka T, Ross B, Kakigi R, Pantev C, Trainor LJ. One year of musical training affects development of auditory corticalevoked fields in young children. Brain. 2006;129(Pt 10):2593-608. [DOI:10.1093/brain/awl247]
[13] Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C. Automatic encoding of polyphonic melodies in musicians and non-musicians. J Cogn Neurosci. 2005;17(10):1578-92. [DOI:10.1162/089892905774597263]
[14] Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995;270(5234):305-7. [DOI:10.1126/science.270.5234.305]
[15] Schlaug G, Jäncke L, Huang Y, Staiger JF, Steinmetz H. Increased corpus callosum size in musicians. Neuropsychologia. 1995;33(8):1047-55. [DOI:10.1016/0028-3932(95)00045-5]
[16] Herdener M, Esposito F, di Salle F, Boller C, Hilti CC, Habermeyer B, et al. Musical training induces functional plasticity in human hippocampus. J Neurosci. 2010;30(4):1377-84. [DOI:10.1523/JNEUROSCI.4513-09.2010]
[17] Habibi A, Wirantana V, Starr A. Cortical activity during perception of musical rhythm: Comparing musicians and non-musicians. Psychomusicology. 2014;24(2):125-35. [DOI:10.1037/pmu0000046]
[18] Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull. 2002;63:223-41. [DOI:10.1093/bmb/63.1.223]
[19] Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L. Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am. 1997;101(4):2151-63. [DOI:10.1121/1.418265]
[20] Boege P, Janssen T. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/Ofunctions in normal and cochlear hearing loss ears. J Acoust Soc Am. 2002;111(4):1810-8. [DOI:10.1121/1.1460923]
[21] Johannesen PT, Lopez-Poveda EA. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. J Acoust Soc Am. 2008;124(4):2149-63. [DOI:10.1121/1.2968692]
[22] Rasetshwane DM, Neely ST, Kopun JG, Gorga MP. Relation of distortion-product otoacoustic emission input-output functions to loudness. J Acoust Soc Am. 2013 Jul;134(1):369-83. [DOI:10.1121/1.4807560]
[23] Williams EJ, Bacon SP. Compression estimates using behavioral and otoacoustic emission measures. Hear Res. 2005;201(1-2):44-54. [DOI:10.1016/j.heares.2004.10.006]
[24] Dorn PA, Konrad-Martin D, Neely ST, Keefe DH, Cyr E, Gorga MP. Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears. J Acoust Soc Am. 2001;110(6):3119-31. [DOI:10.1121/1.1417524]
[25] Oswald JA, Janssen T. Weighted DPOAE input/output-functions: a tool for automatic assessment of hearing loss in clinical application. Z Med Phys. 2003;13(2):93-8. [DOI:10.1078/0939-3889-00148]
[26] Lee C-Y, Hung T-H. Identification of Mandarin tones by English-speaking musicians and non-musicians. J Acoust Soc Am. 2008;124(5):3235-48. [DOI:10.1121/1.2990713]
[27] Devi N, Ajith Kumar U, Arpitha V, Khyathi G. Development and standardization of ‘questionnaire on music perception ability’. Sangeeth Galaxy. 2017;6(1):3-13.
[28] Tierney AT, Kraus N. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain Lang. 2013;124(3):225-31. [DOI:10.1016/j.bandl.2012.12.014]
[29] Schellenberg EG. Music and cognitive abilities. Current Directions in Psychological Science. 2005;14(6):317-20. [DOI:10.1111/j.0963-7214.2005.00389.x]
[30] Carhart R, Jerger JF. Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord. 1959;24(4):330-45. [DOI:10.1044/jshd.2404.330]
[31] Kummer P, Janssen T, Hulin P, Arnold W. Optimal L(1)- L(2) primary tone level separation remains independent of test frequency in humans. Hear Res. 2000;146(1-2):47-56. [DOI:10.1016/S0378-5955(00)00097-6]
[32] Janssen T, Niedermeyer HP, Arnold W. Diagnostics of the cochlear amplifier by means of distortion product optoacoustic emissions. ORL J Otorhinolaryngol Relat Spec. 2006;68(6):334-9. [DOI:10.1159/000095275]
[33] Jain C, Mohamed H, Kumar AU. The effect of short-term musical training on speech perception in noise. Audiol Res. 2015;5(1):111. [DOI:10.4081/audiores.2015.111]
[34] Mishra SK, Panda MR, Raj S. Influence of musical training on sensitivity to temporal fine structure. Int J Audiol. 2015;54(4):220-6. [DOI:10.3109/14992027.2014.969411]
[35] Rammsayer T, Altenmüller E. Temporal information processing in musicians and non-musicians. Music Percept. 2006;24(1):37-48. [DOI:10.1525/mp.2006.24.1.37]
[36] Abdala C. Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates. J Acoust Soc Am. 2000;107(1):446-56. [DOI:10.1121/1.428315]
[37] Probst R, Harris FP, Hauser R. Clinical monitoring using otoacoustic emissions. Br J Audiol. 1993;27(2):85-90. [DOI:10.3109/03005369309077896]
[38] Robertson D, Gummer M. Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear Res. 1985;20(1):63-77. [DOI:10.1016/0378-5955(85)90059-0]
[39] Gummer M, Yates GK, Johnstone BM. Modulation transfer function of efferent neurones in the guinea pig cochlea. Hear Res. 1988;36(1):41-51. [DOI:10.1016/0378-5955(88)90136-0]
[40] Hantz EC, Crummer GC, Wayman JW, Walton JP, Frisina RD. Effects of musical training and absolute pitch on the neural processing of melodic intervals: A P3 event-related potential study. Music Percept. 1992;10(1):25. [DOI:10.2307/40285536]
Files | ||
Issue | Vol 31 No 1 (2022) | |
Section | Research Article(s) | |
DOI | https://doi.org/10.18502/avr.v31i1.8131 | |
Keywords | ||
Hearing cochlea music |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |