Review Article

Applications of auditory evoked potentials in tinnitus: a review

Abstract

Background and Aim: Subjective tinnitus is a phantom auditory perception caused by different factors and affects the patient’s quality of life. The tinnitus pathophysiology is not fully unders­tood; therefore, there is no effective treatment for tinnitus. Along with other methods, auditory evoked potentials (AEPs) may be helpful in understanding this condition and the involved struc­tures. This study aimed to review the applications of AEPs in tinnitus studies.
Recent Findings: The studies investigating tinnitus were categorized into three groups of tinnitus pathophysiology, pre- or post-treatment/intervention evaluation of tinnitus, and objective diagnosis of tinnitus. Contradictory and unrepeatable findings were observed in each group.
Conclusion: Discrepancies in the results of AEPs studies can be due to between-group and within-group differences, lack of proper matching in terms of tinnitus etiology and hearing loss, and difference in neurophysiologic models of tinnitus.

1. Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol. 2014;5:206. doi: 10.3389/fneur.2014.00206
2. Langguth B, Elgoyhen AB. Current pharmacological treatments for tinnitus. Expert Opin Pharmacother. 2012;13(17):2495-509. doi: 10.1517/14656566.2012.739608
3. McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hear Res. 2016;337:70-9. doi: 10.1016/j.heares.2016.05.009
4. van Zwieten G, Janssen MLF, Smit JV, Janssen AML, Roet M, Jahanshahi A, et al. Inhibition of experimental tinnitus with high frequency stimulation of the rat medial geniculate body. Neuromodulation. 2019;22(4):416-424. doi: 10.1111/ner.12795
5. Hoffman HJ, Reed GW. Epidemiology of tinnitus. In: Snow JB, editor. Tinnitus: theory and management. 1st ed. Hamilton: BC Decker Inc; 2004. p. 16-41.
6. Gu JW, Halpin CF, Nam E-C, Levine RA, Melcher JR. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol. 2010;104(6):3361-70. doi: 10.1152/jn.00226.2010
7. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990;8(4):221-54. doi: 10.1016/0168-0102(90)90031-9
8. LePage EL. Functional role of the olivo-cochlear bundle: a motor unit control system in the mammalian cochlea. Hear Res. 1989;38(3):177-98. doi: 10.1016/0378-5955(89)90064-6
9. Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol. 1978;41(2):365-83. doi: 10.1152/jn.1978.41.2.365
10. Feldmann H. Homolateral and contralateral masking of tinnitus by noise-bands and by pure tones. Audiology. 1971;10(3):138-44. doi: 10.3109/00206097109072551
11. Flor H, Elbert T, Mühlnickel W, Pantev C, Wienbruch C, Taub E. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res. 1998;119(2):205-12. doi: 10.1007/s002210050334
12. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991-6. doi: 10.1073/pnas.95.17.9991
13. Weisz N, Müller S, Schlee W, Dohrmann K, Hartmann T, Elbert T. The neural code of auditory phantom perception. J Neurosci. 2007;27(6):1479-84. doi: 10.1523/JNEUROSCI.3711-06.2007
14. Mulders WHAM, Robertson D. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience. 2009;164(2):733-46. doi: 10.1016/j.neuroscience.2009.08.036
15. Alan D. Legatt. Brainstem Auditory Evoked Potentials: Methodology, Interpretation, and Clinical Application. In: Aminoff MJ, editor. Aminoff's electrodiagnosis in clinical neurology: expert consult. 6th ed. Philadelphia: Elsevier; 2012.p.519-52.
16. Melcher JR, Kiang NY. Generators of the brainstem audi¬tory evoked potential in cat III: identified cell populations. Hear Res. 1996;93(1-2):52-71. doi: 10.1016/0378-5955(95)00200-6
17. Lütkenhöner B, Krumbholz K, Lammertmann C, Seither-Preisler A, Steinsträter O, Patterson RD. Localization of primary auditory cortex in humans by magnetoencephalography. Neuroimage. 2003;18(1):58-66. doi: 10.1006/nimg.2002.1325
18. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987;24(4):375-425. doi: 10.1111/j.1469-8986.1987.tb00311.x
19. Eggermont JJ. The Neuroscience of Tinnitus. 1st ed. Oxford University Press; 2012.
20. Qiu C, Salvi R, Ding D, Burkard R. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res. 2000;139(1-2):153-71. doi: 10.1016/s0378-5955(99)00171-9
21. Atik A. Pathophysiology and treatment of tinnitus: an elusive disease. Indian J Otolaryngol Head Neck Surg. 2014;66(Suppl 1):1-5. doi: 10.1007/s12070-011-0374-8
22. Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ. Pathophysiology of subjective tinnitus: triggers and maintenance. Front Neurosci. 2018;12:866. doi: 10.3389/fnins.2018.00866
23. Bramhall NF, McMillan GP, Gallun FJ, Konrad-Martin D. Auditory brainstem response demonstrates that reduced peripheral auditory input is associated with self-report of tinnitus. J Acoust Soc Am. 2019;146(5):3849-62. doi: 10.1121/1.5132708
24. Chen GD, Fechter LD. The relationship between noise-induced hearing loss and hair cell loss in rats. Hear Res. 2003;177(1-2):81-90. doi: 10.1016/s0378-5955(02)00802-x
25. Kehrle HM, Granjeiro RC, Sampaio AL, Bezerra R, Almeida VF, Oliveira CA. Comparison of auditory brainstem response results in normal-hearing patients with and without tinnitus. Arch Otolaryngol Head Neck Surg. 2008;134(6):647-51. doi: 10.1001/archotol.134.6.647
26. Attias J, Pratt H, Reshef I, Bresloff I, Horowitz G, Polyakov A, et al. Detailed analysis of auditory brainstem responses in patients with noise-induced tinnitus. Audiology. 1996;35(5):259-70. doi: 10.3109/00206099609071946
27. Kim SI, Kim MG, Kim SS, Byun JY, Park MS, Yeo SG. Evaluation of tinnitus patients by audiometric configuration. Am J Otolaryngol. 2016;37(1):1-5. doi: 10.1016/j.amjoto.2015.08.009
28. Goljanian Tabrizi A, Barati B, Moslemi S. Comparing OAE and ABR tests in tinnitus patients with and without hearing loss. Journal of Otorhinolaryngology and Facial Plastic Surgery. 2017;3(1):e4. doi: 10.22037/orlfps.v2017i1.18241
29. Milloy V, Fournier P, Benoit D, Noreña A, Koravand A. Auditory brainstem responses in tinnitus: a review of who, how, and what? Front Aging Neurosci. 2017;9:237. doi: 10.3389/fnagi.2017.00237
30. dos Santos-Filha VA, Samelli AG, Matas CG. Noise-induced tinnitus: auditory evoked potential in symptommatic and asymptomatic patients. Clinics (Sao Paulo). 2014;69(7):487-90. doi: 10.6061/clinics/2014(07)08
31. Guest H, Munro KJ, Prendergast G, Howe S, Plack CJ. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res. 2017;344:265-74. doi: 10.1016/j.heares.2016.12.002
32. Gu JW, Herrmann BS, Levine RA, Melcher JR. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol. 2012;13(6):819-33. doi: 10.1007/s10162-012-0344-1
33. Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31(38):13452-7. doi: 10.1523/JNEUROSCI.2156-11.2011
34. Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol. 1993;113(3):330-4. doi: 10.3109/00016489309135819
35. Pujol R, Puel JL. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci. 1999;884(1):249-54. doi: 10.1111/j.1749-6632.1999.tb08646.x
36. Rüttiger L, Singer W, Panford-Walsh R, Matsumoto M, Lee SC, Zuccotti A, et al. The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One. 2013;8(3):e57247. doi: 10.1371/journal.pone.0057247
37. Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110(3):577-86. doi: 10.1152/jn.00164.2013
38. Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res. 2017;349:138-147. doi: 10.1016/j.heares.2017.01.003
39. Michalewski HJ, Thompson LW, Patterson JV, Bowman TE, Litzelman D. Sex differences in the amplitudes and latencies of the human auditory brain stem potential. Electroencephalogr Clin Neurophysiol. 1980;48(3):351-6. doi: 10.1016/0013-4694(80)90271-0
40. Trune DR, Mitchell C, Phillips DS. The relative importance of head size, gender and age on the auditory brainstem response. Hear Res. 1988;32(2-3):165-74. doi: 10.1016/0378-5955(88)90088-3
41. Don M, Ponton CW, Eggermont JJ, Masuda A. Auditory brainstem response (ABR) peak amplitude variability reflects individual differences in cochlear response times. J Acoust Soc Am. 1994;96(6):3476-91. doi: 10.1121/1.410608
42. Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, et al. Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol. 2014;112(5):1025-39. doi: 10.1152/jn.00738.2013
43. Joris PX, Schreiner CE, Rees A. Neural processing of amplitude-modulated sounds. Physiol Rev. 2004;84(2):541-77. doi: 10.1152/physrev.00029.2003
44. Shaheen LA, Valero MD, Liberman MC. Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol. 2015;16(6):727-45. doi: 10.1007/s10162-015-0539-3
45. Bharadwaj HM, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham BG. Individual differences reveal correlates of hidden hearing deficits. J Neurosci. 2015;35(5):2161-72. doi: 10.1523/JNEUROSCI.3915-14.2015
46. Lutman M, Davis A, Ferguson M. Epidemiological evidence for the effectiveness of the noise at work regulations, RR669.2008. Sudbury, UK: Health and Safety Executive available from: http://eprints.soton.ac.uk/id/eprint/65355
47. Batrel C, Huet A, Hasselmann F, Wang J, Desmadryl G, Nouvian R, et al. Mass potentials recorded at the round window enable the detection of low spontaneous rate fibers in gerbil auditory nerve. PLoS One. 2017;12(1):e0169890. doi: 10.1371/journal.pone.0169890
48. Theodoroff SM, Chambers RD, Folmer RL, McMillan GP. Auditory middle latency responses in individuals with debilitating tinnitus. Int Tinnitus J. 2011;16(2):104-10.
49. Gerken GM, Hesse PS, Wiorkowski JJ. Auditory evoked responses in control subjects and in patients with problem-tinnitus. Hear Res. 2001;157(1-2):52-64. doi: 10.1016/s0378-5955(01)00277-5
50. dos Santos Filha VA, Samelli AG, Matas CG. Middle latency auditory evoked potential (MLAEP) in workers with and without tinnitus who are exposed to occupational noise. Med Sci Monit. 2015;21:2701-6. doi: 10.12659/MSM.894436
51. De Ridder D, Vanneste S, Langguth B, Llinas R. Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol. 2015;6:124. doi: 10.3389/fneur.2015.00124
52. Boutros NN, Mears R, Pflieger ME, Moxon KA, Ludowig E, Rosburg T. Sensory gating in the human hippocampal and rhinal regions: regional differences. Hippocampus. 2008;18(3):310-6. doi: 10.1002/hipo.20388
53. Korzyukov O, Pflieger ME, Wagner M, Bowyer SM, Rosburg T, Sundaresan K, et al. Generators of the intracranial P50 response in auditory sensory gating. Neuroimage. 2007;35(2):814-26. doi: 10.1016/j.neuroimage.2006.12.011
54. Dolu N, Süer C, Ozesmi Ç. A comparison of the different interpair intervals in the conditioning-testing P50 paradigms. Int J Psychophysiol. 2001;41(3):265-70. doi: 10.1016/s0167-8760(01)00134-9
55. Waldo MC, Freedman R. Gating of auditory evoked responses in normal college students. Psychiatry Res. 1986;19(3):233-9. doi: 10.1016/0165-1781(86)90102-2
56. Rauschecker JP, May ES, Maudoux A, Ploner M. Frontostriatal gating of tinnitus and chronic pain. Trends Cogn Sci. 2015;19(10):567-578. doi: 10.1016/j.tics.2015.08.002
57. Campbell J, Bean C, LaBrec A. Normal hearing young adults with mild tinnitus: Reduced inhibition as measured through sensory gating. Audiol Res. 2018;8(2):214. doi: 10.4081/audiores.2018.214
58. Vanneste S, van de Heyning P, De Ridder D. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci. 2011;34(5):718-31. doi: 10.1111/j.1460-9568.2011.07793.x
59. Frank E, Schecklmann M, Landgrebe M, Burger J, Kreuzer P, Poeppl TB, et al. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. J Neurol. 2012;259(2):327-33. doi: 10.1007/s00415-011-6189-4
60. Knight RT, Staines WR, Swick D, Chao LL. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol (Amst). 1999;101(2-3):159-78. doi: 10.1016/s0001-6918(99)00004-9
61. Hazell J. Support for a neurophysiological model of tinnitus: research data and clinical experience. Paper presented at Vth International Tinnitus Seminar, Portland OR, USA July; 1995.
62. Martin BA, Tremblay KL, Korczak P. Speech evoked potentials: from the laboratory to the clinic. Ear Hear. 2008;29(3):285-313. doi: 10.1097/AUD.0b013e3181662c0e
63. Attias J, Furman V, Shemesh Z, Bresloff I. Impaired brain processing in noise-induced tinnitus patients as measured by auditory and visual event-related potentials. Ear Hear. 1996;17(4):327-33. doi: 10.1097/00003446-199608000-00004
64. dos Santos Filha VAV, Matas CG. Late Auditory evoked potentials in individuals with tinnitus. Braz J Otorhinolaryngol. 2010;76(2):263-70.
65. Konadath S, Manjula P. Auditory brainstem response and late latency response in individuals with tinnitus having normal hearing. Intractable Rare Dis Res. 2016;5(4):262-268. doi: 10.5582/irdr.2016.01053
66. Jacobson GP, McCaslin DL. A reexamination of the long latency N1 response in patients with tinnitus. J Am Acad Audiol. 2003;14(7):393-400.
67. Bramhall NF, Niemczak CE, Kampel SD, Billings CJ, McMillan GP. Evoked Potentials Reveal Noise Exposure–Related Central Auditory Changes Despite Normal Audiograms. Am J Audiol. 2020;29(2):152-64. doi: 10.1044/2019_AJA-19-00060
68. Langers DRM, de Kleine E, van Dijk P. Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci. 2012;6:2. doi: 10.3389/fnsys.2012.00002
69. Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N. Mapping cortical hubs in tinnitus. BMC Biol. 2009;7:80. doi: 10.1186/1741-7007-7-80
70. Mühlnickel W, Elbert T, Taub E, Flor H. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A. 1998;95(17):10340-3. doi: 10.1073/pnas.95.17.10340
71. Yang S, Weiner BD, Zhang LS, Cho S-J, Bao S. Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci U S A. 2011;108(36):14974-9. doi: 10.1073/pnas.1107998108
72. Li S, Choi V, Tzounopoulos T. Pathogenic plasticity of Kv7. 2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci U S A. 2013;110(24):9980-5. doi: 10.1073/pnas.1302770110
73. Wang Y, Wang M, Xie R. D-Stellate neurons of the ventral cochlear nucleus decrease in auditory nerve-evoked activity during age-related hearing loss. Brain Sci. 2019;9(11):302. doi: 10.3390/brainsci9110302
74. Kaltenbach JA. Tinnitus: models and mechanisms. Hear Rre. 2011;276(1-2):52-60. doi: 10.1016/j.heares.2010.12.003
75. Eggermont JJ. Cortical tonotopic map reorganization and its implications for treatment of tinnitus. Acta Otolaryngol Suppl. 2006;126(556):9-12. doi: 10.1080/03655230600895259
76. Kaltenbach JA. Neurophysiologic mechanisms of tinnitus. J Am Acad Audiol. 2000;11(3):125-37.
77. Noreña AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res. 2003;183(1-2):137-53. doi: 10.1016/s0378-5955(03)00225-9
78. Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment. Nat Rev Neurol. 2016;12(3):150-60. doi: 10.1038/nrneurol.2016.12
79. Ilin V, Malyshev A, Wolf F, Volgushev M. Fast computations in cortical ensembles require rapid initiation of action potentials. J Neurosci. 2013;33(6):2281-92. doi: 10.1523/JNEUROSCI.0771-12.2013
80. Campolo J, Lobarinas E, Salvi R. Does tinnitus “fill in” the silent gaps? Noise Health. 2013;15(67):398-405. doi: 10.4103/1463-1741.121232
81. Ibarra-Zarate D, Alonso-Valerdi LM. Acoustic therapies for tinnitus: The basis and the electroencephalographic evaluation. Biomedical Signal Processing and Control. 2020;59:101900. doi: 10.1016/j.bspc.2020.101900
82. Zeng F-G, Tang Q, Dimitrijevic A, Starr A, Larky J, Blevins NH. Tinnitus suppression by low-rate electric stimulation and its electrophysiological mechanisms. Hear Res. 2011;277(1-2):61-6. doi: 10.1016/j.heares.2011.03.010
83. Tugumia D, Samelli AG, Matas CG, Magliaro FCL, Rabelo CM. Auditory training program in subjects with tinnitus. Codas. 2016;28(1):27-33. doi: 10.1590/2317-1782/20162015113
84. Yang H, Xiong H, Yu R, Wang C, Zheng Y, Zhang X. The characteristic and changes of the event-related potentials (ERP) and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients. PLoS One. 2013;8(8):e70831. doi: 10.1371/journal.pone.0070831
85. Mahmoudian S, Farhadi M, Mohebbi M, Alaeddini F, Najafi-Koopaie M, Darestani Farahani E, et al. Alterations in auditory change detection associated with tinnitus residual inhibition induced by auditory electrical sti¬mulation. J Am Acad Audiol. 2015;26(4):408-22. doi: 10.3766/jaaa.26.4.8
86. Hébert S. Individual reliability of the standard clinical method vs patient-centered tinnitus likeness rating for assessment of tinnitus pitch and loudness matching. JAMA Otolaryngol Head Neck Surg. 2018;144(12):1136-44. doi: 10.1001/jamaoto.2018.2416
87. Duda V, Scully O, Baillargeon M-S, Hébert S. Does tinnitus fill in the gap using electrophysiology? a scoping review. Otolaryngol Clin North Am. 2020;53(4):563-582. doi: 10.1016/j.otc.2020.03.006
88. Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, et al. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci. 2006;120(1):188-95. doi: 10.1037/0735-7044.120.1.188
89. Fournier P, Hébert S. Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res. 2013;295:16-23. doi: 10.1016/j.heares.2012.05.011
90. Duda-Milloy V, Tavakoli P, Campbell K, Benoit DL, Koravand A. A time-efficient multi-deviant paradigm to determine the effects of gap duration on the mismatch negativity. Hear Res. 2019;377:34-43. doi: 10.1016/j.heares.2019.03.004
91. Campbell K, Macdonald M. The effects of attention and conscious state on the detection of gaps in long duration auditory stimuli. Clin Neurophysiol. 2011;122(4):738-47. doi: 10.1016/j.clinph.2010.10.036
92. Ku Y, Ahn JW, Kwon C, Kim DY, Suh M-W, Park MK, et al. The gap-prepulse inhibition deficit of the cortical N1-P2 complex in patients with tinnitus: The effect of gap duration. Hear Res. 2017;348:120-128. doi: 10.1016/j.heares.2017.03.003
93. Atcherson SR, Gould HJ, Mendel MI, Ethington CA. Auditory N1 component to gaps in continuous narrowband noises. Ear Hear. 2009;30(6):687-95. doi: 10.1097/AUD.0b013e3181b1354f
94. Berger JI, Coomber B, Wallace MN, Palmer AR. Reduc¬tions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. Eur J Neurosci. 2017;45(3):398-409. doi: 10.1111/ejn.13474
95. Berger JI, Owen W, Wilson CA, Hockley A, Coomber B, Palmer AR, et al. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals. Brain Res. 2018;1679:101-8. doi: 10.1016/j.brainres.2017.11.026
Files
IssueVol 30 No 4 (2021) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/avr.v30i4.7443
Keywords
Auditory evoked potentials tinnitus gap-prepulse inhibition auditory brainstem response middle latency responses late latency response

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Seraji H, Mohammadkhani G, Taghavi SMR. Applications of auditory evoked potentials in tinnitus: a review. Aud Vestib Res. 2021;30(4):220-231.