The effect of head tilt angle in the roll plane on the virtual subjective visual vertical results in healthy adults
Abstract
Background and Aim: The subjective visual vertical (SVV) is commonly considered as an indicator of the sense of orientation and attributed to the utricular function. The present study examined the impact of different head tilt angles on SVV among the normal individuals.
Methods: SVV was measured in 47 normal participants (30 males and 17 females; mean ± SD age: 22.14 ± 3.46) using a virtual goggle and forced-choice paradigm and was applied twice in 0º, 15º, 30° and 45º to the left or to the right. In addition, difference in mean of SVV in zero and non-zero positions was compared.
Results: There was a statistically significant difference between the mean SVV results of 0º and 15º (p ˂ 0.001). The comparison of mean SVV results between 0º and 30º, and between 0º and 45º were not significant (p > 0.05). In addition, comparison of SVV results between rightward and leftward tilt of 15º was statistically significant (p ˂ 0.001). The latter comparison was not significant for 30º and 45º (p > 0.05).
Conclusion: Our results showed that head tilt angle of 15º have a substantial impact on the virtual SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in clinical populations.
2. Xu H, Liang F, Chen L, Song X, Tong MCF, Thong JF, et al. Evaluation of the utricular and saccular function using oVEMPs and cVEMPs in BPPV patients. J Otolaryngol Head Neck Surg. 2016;45:12. doi: 10.1186/s40463-016-0125-7
3. Kumar L, Thakar A, Thakur B, Sikka K. Sensitivity and specificity of clinical and laboratory otolith function tests. Otol Neurotol. 2017;38(9):e378-83. doi: 10.1097/MAO.0000000000001525
4. Michelson PL, McCaslin DL, Jacobson GP, Petrak M, English L, Hatton K. Assessment of subjective visual vertical (SVV) using the "Bucket Test" and the virtual SVV system. Am J Audiol. 2018;27(3):249-59. doi: 10.1044/2018_AJA-17-0019
5. Lejeune L, Thouvarecq R, Anderson DJ, Caston J, Jouen F. Perception. 2009;38(7):988-1001. doi: 10.1068/p6132
6. Byun JY, Hong SM, Yeo SG, Kim SH, Kim SW, Park MS. Role of subjective visual vertical test during eccentric rotation in the recovery phase of vestibular neuritis. Auris Nasus Larynx. 2010;37(5):565-9. doi: 10.1016/j.anl.2010.02.004
7. Guardia D, Cottencin O, Thomas P, Dodin V, Luyat M. Spatial orientation constancy is impaired in anorexia nervosa. Psychiatry Res. 2012;195(1-2):56-9. doi: 10.1016/j.psychres.2011.08.003
8. Collewijn H, Van der Steen J, Ferman L, Jansen TC. Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings. Exp Brain Res. 1985;59(1):185-96. doi: 10.1007/BF00237678
9. De Vrijer M, Medendorp WP, Van Gisbergen JAM. Accuracy-precision trade-off in visual orientation constancy. J Vis. 2009;9(2):9.1-15. doi: 10.1167/9.2.9
10. Kheradmand A, Gonzalez G, Otero-Millan J, Lasker A. Visual perception of upright: Head tilt, visual errors and viewing eye. J Vestib Res. 2016;25(5-6):201-9. doi: 10.3233/VES-160565
11. Tarnutzer AA, Bockisch CJ, Straumann D. Head roll dependent variability of subjective visual vertical and ocular counterroll. Exp Brain Res. 2009;195(4):621-6. doi: 10.1007/s00221-009-1823-4
12. Bergenius J, Tribukait A, Brantberg K. The subjective horizontal at different angles of roll-tilt in patients with unilateral vestibular impairment. Brain Res Bull. 1996;40(5-6):385-90; discussion 390-1. doi: 10.1016/0361-9230(96)00131-1
13. Brandt T, Dieterich M, Danek A. Vestibular cortex lesions affect the perception of verticality. Ann Neurol. 1994;35(4):403-12. doi: 10.1002/ana.410350406
14. Funk J, Finke K, Müller HJ, Utz KS, Kerkhoff G. Effects of lateral head inclination on multimodal spatial orien¬tation judgments in neglect: evidence for impaired spatial orientation constancy. Neuropsychologia. 2010;48(6):1616-27. doi: 10.1016/j.neuropsychologia.2010.01.029
15. Funk J, Finke K, Müller HJ, Utz KS, Kerkhoff G. Visual context modulates the subjective vertical in neglect: evidence for an increased rod-and-frame-effect. Neuroscience. 2011;173:124-34. doi: 10.1016/j.neuroscience.2010.10.067
16. Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, et al. Humans use internal models to construct and update a sense of verticality. Brain. 2010;133(Pt 12):3552-63. doi: 10.1093/brain/awq311
17. Van Beuzekom AD, Van Gisbergen JA. Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. J Neurophysiol. 2000;84(1):11-27. doi: 10.1152/jn.2000.84.1.11
18. Bolandi Shirejini M, Farahani A, Nazeri A. The application of subjective visual vertical in balance system disorders. Aud Vestib Res. 2018;27(1): 1-11.
19. Müller JA, Bockisch CJ, Tarnutzer AA. Spatial orientation in patients with chronic unilateral vestibular hypofunction is ipsilesionally distorted. Clin Neurophysiol. 2016;127(10):3243-51. doi: 10.1016/j.clinph.2016.07.010
20. Vidal J, Jeannerod M, Lifschitz W, Levitan H, Rosenberg J, Segundo JP. Static and dynamic properties of gravity-sensitive receptors in the cat vestibular system. Kybernetik. 1971;9(6):205-15. doi: 10.1007/BF00289582
21. Kim S-H, Kim J-S. Effects of head position on perception of gravity in vestibular neuritis and lateral medullary infarction. Front Neurol. 2018;9:60. doi: 10.3389/fneur.2018.00060
22. Fernandez C, Goldberg JM, Abend WK. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol. 1972;35(6):978-87. doi: 10.1152/jn.1972.35.6.978
23. Uchino Y, Sato H, Kushiro K, Zakir M, Imagawa M, Ogawa Y, et al. Cross-striolar and commissural inhibition in the otolith system. Ann N Y Acad Sci. 1999;871:162-72. doi: 10.1111/j.1749-6632.1999.tb09182.x
24. Jaeger R, Takagi A, Haslwanter T. Modeling the relation between head orientations and otolith responses in humans. Hear Res. 2002;173(1-2):29-42. doi: 10.1016/s0378-5955(02)00485-9
25. Wade SW, Curthoys IS. The effect of ocular torsional position on perception of the roll-tilt of visual stimuli. Vision Res. 1997;37(8):1071-8. doi: 10.1016/s0042-6989(96)00252-0
26. Goltz HC, Mirabella G, Leung JCY, Blakeman AW, Colpa L, Abuhaleeqa K, et al. Effects of age, viewing distance and target complexity on static ocular counterroll. Vision Res. 2009;49(14):1848-52. doi: 10.1016/j.visres.2009.04.021
27. Mezey LE, Curthoys IS, Burgess AM, Goonetilleke SC, MacDougall HG. Changes in ocular torsion position produced by a single visual line rotating around the line of sight--visual "entrainment" of ocular torsion. Vision Res. 2004;44(4):397-406. doi: 10.1016/j.visres.2003.09.026
28. Van Beuzekom AD, Medendorp WP, Van Gisbergen JA. The subjective vertical and the sense of self orientation during active body tilt. Vision Res. 2001;41(25-26):3229-42. doi: 10.1016/s0042-6989(01)00144-4
29. Cuturi LF, Gori M. The effect of visual experience on perceived haptic verticality when tilted in the roll plane. Front Neurosci. 2017;11:687. doi: 10.3389/fnins.2017.00687
30. Ashish G, Augustine AM, Tyagi AK, Lepcha A, Balraj A. Subjective visual vertical and horizontal: normative values using a software-based test in the Indian population. Indian J Otol. 2016;22(3):208-12. doi: 10.4103/0971-7749.187972
Files | ||
Issue | Vol 30 No 1 (2021) | |
Section | Research Article(s) | |
DOI | https://doi.org/10.18502/avr.v30i1.5307 | |
Keywords | ||
Head tilt angle subjective visual vertical virtual goggle roll plane utricle healthy adults |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |