Research Article

Comparing mastoid and posterior cervical muscles vibration effects on eye movement in normal subjects

Abstract

Background and Aim: Vibration is a method for stimulating the vestibular system. This method can unmask asymmetry between two vestibular systems (such as unilateral peripheral vestibular disorders). The occurrence of vibration-induced nystagmus (VIN) in healthy subjects can affect the diagnosis of patients with unilateral peripheral vestibular disorders. Thus, the evaluation of VIN in healthy subjects is critical to help the diagnosis of unilateral peripheral vestibular disorders.
Methods: This study was carried out on 72 healthy subjects (mean ± SD age: 27.12 ± 4.97 years) in the Auditory and Balance Clinic of Rofeideh Rehabilitation Hospital. Vibration sti­mulation with a frequency of 30 and 100 Hz was used on mastoid and posterior cervical muscles (PCMs) and simultaneously eye movements were recorded and analyzed using videonystagmography.
Results: The mastoid vibration with a frequency of 30 and 100 Hz, respectively produced VIN in 16.67 % and 27.78 % of subjects and VIN observed in PCMs vibration with a frequency of 30 and 100 Hz in 4.17 % and 9.72 % of the subjects.
Conclusion: The occurrence of VIN in healthy subjects was more probable with mastoid vibration in 100 Hz. In this study, VIN was predominantly horizontal, its direction was toward the stimulated side, and its slow phase velocity was lower than 5 deg/s. These criteria could be used for differentiation between normal and abnormal subjects.

1. Sparto PJ, Redfern MS, Jasko JG, Casselbrant ML, Mandel EM, Furman JM. The influence of dynamic visual cues for postural control in children aged 7-12 years. Exp Brain Res. 2006;168(4):505-16. doi: 10.1007/s00221-005-0109-8
2. Mickle KJ, Munro BJ, Steele JR. Gender and age affect balance performance in primary school-aged children. J Sci Med Sport. 2011;14(3):243-8. doi: 10.1016/j.jsams.2010.11.002
3. Macedo C, Gazzola JM, Ricci NA, Doná F, Ganança FF. Influence of sensory information on static balance in older patients with vestibular disorder. Braz J Otorhinolaryngol. 2015;81(1):50-7. doi: 10.1016/j.bjorl.2014.11.004
4. Walther LE. Current diagnostic procedures for diagnosing vertigo and dizziness. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2017;16:Doc02. doi: 10.3205/cto000141
5. Xie S, Guo J, Wu Z, Qiang D, Huang J, Zheng Y, et al. Vibration-induced nystagmus in patients with unilateral peripheral vestibular disorders. Indian J Otolaryngol Head Neck Surg. 2013;65(4):333-8. doi: 10.1007/s12070-013-0638-6
6. Park H, Shin J, Shim D. Mechanisms of vibration induced nystagmus in normal subjects and patients with vestibular neuritis. Audiol Neurootol. 2007;12(3):189-97. doi: 10.1159/000099023
7. Park HJ, Shin JE, Lim YC, Shin HA. Clinical significance of vibration-induced nystagmus. Audiol Neurootol. 2008;13(3):182-6. doi: 10.1159/000113508
8. Kheradmand A, Zee DS. The bedside examination of the vestibulo-ocular reflex (VOR): an update. Rev Neurol (Paris). 2012;168(10):710-9. doi: 10.1016/j.neurol.2012.07.011
9. McGarvie LA, Curthoys IS, MacDougall HG, Halmagyi GM. What does the dissociation between the results of video head impulse versus caloric testing reveal about the vestibular dysfunction in Ménière's disease? Acta Otolaryngol. 2015;135(9):859-65. doi: 10.3109/00016489.2015.1015606
10. Dumas G, De CW, Hamann KF, Cohen B, Negrevergne M, Ulmer E, et al., editors. Skull vibration induced nystagmus test. Ann Otolaryngol Chir Cervicofac. 2007;124(4):173-83. doi: 10.1016/j.aorl.2007.05.001
11. Hamann KF, Schuster EM. Vibration-induced nystag¬mus - A sign of unilateral vestibular deficit. ORL J Otorhinolaryngol Relat Spec. 1999;61(2):74-9. doi: 10.1159/000027645
12. Ohki M, Murofushi T, Nakahara H, Sugasawa K. Vibration-induced nystagmus in patients with vestibular disorders. Otolaryngol Head Neck Surg. 2003;129(3):255-8. doi: 10.1016/S0194-5998(03)00529-1
13. Perez N. Vibration induced nystagmus in normal subjects and in patients with dizziness. A videonys¬tagmography study. Rev Laryngol Otol Rhinol (Bord). 2003;124(2):85-90.
14. Colombé C, Dumas G, Troussier J, Schmerber S. Assessement of the vibration-induced nystagmus test (Dumas' test) in deaf children: preliminary results. J Hear Sci. 2018;8(2);289
15. Dumas G, Karkas A, Perrin P, Chahine K, Schmerber S. High-frequency skull vibration-induced nystagmus test in partial vestibular lesions. Otol Neurotol. 2011;32(8):1291-301. doi: 10.1097/MAO.0b013e31822f0b6b
16. Zamora EG, Araújo PE, Guillén VP, Gamarra MFV, Ferrer VF, Rauch MC, et al. Parameters of skull vibration-induced nystagmus in normal subjects. Eur Arch Otorhinolaryngol. 2018;275(8):1955-1961. doi: 10.1007/s00405-018-5020-6
17. Park H, Hong SC, Shin J. Clinical significance of vibration-induced nystagmus and head-shaking nystagmus through follow-up examinations in patients with vestibular neuritis. Otol Neurotol. 2008;29(3):375-9. doi: 10.1097/MAO.0b013e318169281f
18. Lee SU, Kee HJ, Sheen SS, Choi BY, Koo JW, Kim JS. Head-shaking and vibration-induced nystagmus during and between the attacks of unilateral ménière's disease. Otol Neurotol. 2015;36(5):865-72. doi: 10.1097/MAO.0000000000000743
19. Dumas G, Curthoys IS, Lion A, Perrin P, Schmerber S. The skull vibration-induced nystagmus test of vestibular function-a review. Front Neurol. 2017;8:41. doi: 10.3389/fneur.2017.00041
20. Dumas G, Lion A, Gauchard GC, Herpin G, Magnusson M, Perrin PP. Clinical interest of postural and vestibulo-ocular reflex changes induced by cervical muscles and skull vibration in compensated unilateral vestibular lesion patients. J Vestib Res. 2013;23(1):41-9. doi: 10.3233/VES-130468
21. Grill E, Heuberger M, Strobl R, Saglam M, Holle R, Linkohr B, et al. Prevalence, Determinants, and consequences of vestibular hypofunction. results from the KORA-FF4 survey. Front Neurol. 2018;9:1076. doi: 10.3389/fneur.2018.01076
22. Mayoux-Benhamou MA, Revel M, Vallee C. Selective electromyography of dorsal neck muscles in humans. Exp Brain Res. 1997;113(2):353-60.
23. Conley MS, Meyer RA, Bloomberg JJ, Feeback DL, Dudley GA. Noninvasive analysis of human neck muscle function. Spine (Phila Pa 1976). 1995;20(23):2505-12.
24. Dumas G, Perrin P, Ouedraogo E, Schmerber S. How to perform the skull vibration-induced nystagmus test (SVINT). Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133(5):343-348. doi: 10.1016/j.anorl.2016.04.002
25. Curthoys IS, Vulovic V, Burgess AM, Sokolic L, Goonetilleke SC. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). Hear Res. 2016;331:131-43. doi: 10.1016/j.heares.2015.10.019
26. Hartmann R, Klinke R. Discharge properties of afferent fibres of the goldfish semicircular canal with high frequency stimulation. Pflugers Arch. 1980;388(2):111-21.
27. Magnusson M, Andersson G, Gomez S, Johansson R, Mårtensson A, Karlberg M, et al. Cervical muscle afferents play a dominant role over vestibular afferents during bilateral vibration of neck muscles. J Vestib Res. 2006;16(3):127-36.
28. Kelders WP, Kleinrensink GJ, van der Geest JN, Feenstra L, de Zeeuw CI, Frens MA. Compensatory increase of the cervico-ocular reflex with age in healthy humans. J Physiol. 2003;553(Pt 1):311-7. doi: 10.1113/jphysiol.2003.049338
29. Hain T, Helminsky J. Anatomy and Physiology of the Normal Vestibular System. In: herdman S, editor. Vestibular rehabilitation. 4th ed. Philadelphia: FA Davis Company; 2007. p. 617-12.
Files
IssueVol 28 No 4 (2019) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v28i4.1460
Keywords
Vibration-induced nystagmus; vestibular vibration; mastoid, posterior cervical muscle; videonystagmography

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Naghibi N, Shaabani M, Bakhshi E. Comparing mastoid and posterior cervical muscles vibration effects on eye movement in normal subjects. Aud Vestib Res. 2019;28(4):242-248.