Research Article

Evaluating plasma oxidative stress markers in prelingual profound sensorineural hearing loss

Abstract

Background and Aim: The etiopathogenesis of sensorineural hearing loss (SNHL) is an essential contributing factor to its morbidity, which cannot be explained entirely so far. The current study aimed to determine the oxidative stress (OS) status by comparing the total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) values in patients with pediatric prelingual profound SNHL. We also evaluated the correlation between OS parameters and audiological test results.
Methods: The study included 25 participants (9 females; age range: 6‒34 months) diagnosed with pediatric prelingual profound SNHL and 25 healthy subjects (10 females; age range: 9‒28 months). Their TAS, TOS, and OSI levels were measured in the plasma of both groups. We evaluated the correlation between OS parameters and audiological test results in the patient group.
Results: We found significantly higher serum TOS levels and OSI values in the patient group (mean ± SD of TOS: 16.08 ± 1.88 μmol H2O2 eq/L, p < 0.001; mean ± SD of OSI: 1.71 ± 0.48 arbitrary units, p < 0.001), compared to the controls. Moreover, we found lower serum TAS levels in the patient group (mean ± SD of TAS: 0.99 ± 0.20 mmol Trolox eq/L), compared to the controls. There was a strong correlation between OS parameters and audiological test results of the patient group.
Conclusion: We detected significantly higher TOS, OSI, and lower TAS levels in pediatric patients with SNHL, compared to the healthy subjects. The obtained data indicated that pediatric SNHL is under OS influence.

1. Lin PH, Hsu CJ, Lin YH, Lin YH, Lee HY, Wu CC, et al. Etiologic and audiologic characteristics of patients with pediatric-onset unilateral and asymmetric sensorineural hearing loss. JAMA Otolaryngol Head Neck Surg. 2017;143(9):912-9. doi: 10.1001/jamaoto.2017.0945
2. Yoshikawa S, Ikeda K, Kudo T, Kobayashi T. The effects of hypoxia, premature birth, infection, ototoxic drugs, circulatory system and congenital disease on neonatal hearing loss. Auris Nasus Larynx. 2004;31(4):361-8. doi: 10.1016/j.anl.2004.07.007
3. Celik M, Karatas E, Kanlikama M. Outcomes of cochlear implantation in children with and without inner ear malformations. Pak J Med Sci. Pak J Med Sci. 2018;34(2):380-4. doi: 10.12669/pjms.342.14066
4. Vasconcellos AP, Kyle ME, Gilani S, Shin JJ. Personally modifiable risk factors associated with pediatric hearing loss: a systematic review. Otolaryngol Head Neck Surg. 2014;151(1):14-28. doi: 10.1177/0194599814526560
5. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-9. doi: 10.1016/j.clinbiochem.2003.10.014
6. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-11. doi: 10.1016/j.clinbiochem.2005.08.008
7. Celik M, Koyuncu İ. A comprehensive study of oxidative stress in tinnitus patients. Indian J Otolaryngol Head Neck Surg. 2018;70(4):521-6. doi: 10.1007/s12070-018-1464-7
8. Haase GM, Prasad KN, Cole WC, Baggett-Strehlau JM, Wyatt SE. Antioxidant micronutrient impact on hearing disorders: concept, rationale, and evidence. Am J Otolaryngol. 2011;32(1):55-61. doi: 10.1016/j.amjoto.2009.09.002
9. Calabrese V, Cornelius C, Maiolino L, Luca M, Chiaramonte R, Toscano MA, et al. Oxidative stress, redox homeostasis and cellular stress response in Ménière's disease: role of vitagenes. Neurochem Res. 2010;35(12):2208-17. doi: 10.1007/s11064-010-0304-2
10. Neri S, Signorelli S, Pulvirenti D, Mauceri B, Cilio D, Bordonaro F, et al. Oxidative stress, nitric oxide, endothelial dysfunction and tinnitus. Free Radic Res. 2006;40(6):615-8. doi: 10.1080/10715760600623825
11. Park SN, Back SA, Park KH, Kim DK, Park SY, Oh JH, et al. Comparison of cochlear morphology and apoptosis in mouse models of presbycusis. Clin Exp Otorhinolaryngol. 2010;3(3):126-35. doi: 10.3342/ceo.2010.3.3.126
12. Seidman MD, Ahmad N, Joshi D, Seidman J, Thawani S, Quirk WS. Age-related hearing loss and its association with reactive oxygen species and mitochondrial DNA damage. Acta Otolaryngol Suppl. 2004;(552):16-24. doi 10.1080/03655230410017823
13. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27(1):1-19. doi: 10.1097/01.aud.0000191942.36672.f3
14. Takumida M, Popa R, Anniko M. Free radicals in the guinea pig inner ear following gentamicin exposure. ORL J Otorhinolaryngol Relat Spec. 1999;61(2):63-70. doi: 10.1159/000027643
15. Ciorba A, Chicca M, Bianchini C, Aimoni C, Pastore A. Sensorineural hearing loss and endothelial dysfunction due to oxidative stress: Is there a connection? J Int Adv Otol. 2012;8(1):16-20.
16. Ciorba A, Gasparini P, Chicca M, Pinamonti S, Martini A. Reactive oxygen species in human inner ear perilymph. Acta Otolaryngol. 2010;130(2):240-6. doi: 10.3109/00016480903143978
17. Gul F, Muderris T, Yalciner G, Sevil E, Bercin S, Ergin M, et al. A comprehensive study of oxidative stress in sudden hearing loss. Eur Arch Otorhinolaryngol. 2017;274(3):1301-8. doi: 10.1007/s00405-016-4301-1
18. Gilles A, Ihtijarevic B, Wouters K, Van de Heyning P. Using prophylactic antioxidants to prevent noise-induced hearing damage in young adults: a protocol for a double-blind, randomized controlled trial. Trials. 2014;15:110. doi: 10.1186/1745-6215-15-110
19. Abi-Hachem RN, Zine A, Van De Water TR. The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotectives strategies. Recent Pat CNS Drug Discov. 2010;5(2):147-63.
20. Ciorba A, Astolfi L, Martini A. Otoprotection and inner ear regeneration. Aud Med. 2008;6(3):170-5. doi: 10.1080/16513860802410806
21. Jiang H, Sha SH, Forge A, Schacht J. Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ. 2006;13(1):20-30. doi: 10.1038/sj.cdd.4401706
22. Nakagawa T, Yamane H, Takayama M, Sunami K, Nakai Y. Apoptosis of guinea pig cochlear hair cells following chronic aminoglycoside treatment. Eur Arch Otorhinolaryngol. 1998;255(3):127-31.
23. Labbé D, Teranishi MA, Hess A, Bloch W, Michel O. Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea. Hear Res. 2005;202(1-2):21-7. DOI: 10.1016/j.heares.2004.10.002
24. Melki SJ, Heddon CM, Frankel JK, Levitt AH, Momin SR, Alagramam KN, et al. Pharmacological protection of hearing loss in the mouse model of endolymphatic hydrops. Laryngoscope. 2010;120(8):1637-45. doi: 10.1002/lary.21018
25. Ewert DL, Lu J, Li W, Du X, Floyd R, Kopke R. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss. Hear Res. 2012;285(1-2):29-39. doi: 10.1016/j.heares.2012.01.013
26. Clerici WJ, Yang L. Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function. Hear Res. 1996;101(1-2):14-22. doi: 10.1016/S0378-5955(96)00126-8
Files
IssueVol 28 No 4 (2019) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v28i4.1458
Keywords
Sensorineural; hearing loss; oxidative stress; total oxidant status; total antioxidant status

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Çelik M, Gönel A. Evaluating plasma oxidative stress markers in prelingual profound sensorineural hearing loss. Aud Vestib Res. 2019;28(4):228-234.