Efficacy of auditory training in older adults by electrophysiological tests
Abstract
Background and Aim: Most elderly people in noisy environments complain of speech comprehension. At present, hearing aids or cochlear implants are the main treatment options. However, these devices merely enhance sound audibility and do not compensate for central processing changes caused by aging, hearing loss, or cognitive decline. This article reviewed plasticity topic in the auditory system and the use of auditory evoked potentials to prove the effectiveness of auditory training.
Recent Findings: The search for relevant articles in the Google Scholar, PubMed, Springer, and ProQuest databases was conducted with the keywords of “auditory education,” “electrophysiology,” “plasticity,” and “aging.” A total of 107 articles were found with these keywords, and finally, 98 articles, published between 1977 and 2018, were used. Existence of plasticity in the central auditory system, regardless of age, has been proven. Therefore, cognitive and auditory training to reduce cognitive problems and improve central hearing processing in appropriate cases can positively affect the quality of hearing and social communication of the elderly. Because efficacy is an important component of any therapeutic approach, the assessment of the benefits of hearing training can be demonstrated by electrophysiological tests.
Conclusion: Auditory training may play an important role in the elderly treatment program with speech perception defects. The usefulness of this rehabilitation can be objectively evaluated through cortical and subcortical electrophysiological methods.
2. Cansino S, Williamson SJ. Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Res. 1997;764(1-2):53-66. doi: 10.1016/S0006-8993(97)00321-1
3. Pichora-Fuller MK, Levitt H. Speech comprehension training and auditory and cognitive processing in older adults. Am J Audiol. 2012;21(2):351-7. doi: 10.1044/1059-0889(2012/12-0025)
4. Humes LE, Burk MH, Strauser LE, Kinney DL. Development and efficacy of a frequent-word auditory training protocol for older adults with impaired hearing. Ear Hear. 2009;30(5):613-27. doi: 10.1097/AUD.0b013e3181b00d90
5. Lu PH, Lee GJ, Raven EP, Tingus K, Khoo T, Thompson PM, et al. Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample. J Clin Exp Neuropsychol. 2011;33(10):1059-68. doi: 10.1080/13803395.2011.595397
6. Recanzone GH, Engle JR, Juarez-Salinas DL. Spatial and temporal processing of single auditory cortical neurons and populations of neurons in the macaque monkey. Hear Res. 2011;271(1-2):115-22. doi: 10.1016/j.heares.2010.03.084
7. Forstmann BU, Tittgemeyer M, Wagenmakers EJ, Derrfuss J, Imperati D, Brown S. The speed-accuracy tradeoff in the elderly brain: a structural model-based approach. J Neurosci. 2011;31(47):17242-9. doi: 10.1523/JNEUROSCI.0309-11.2011
8. Caspary DM, Ling L, Turner JG, Hughes LF. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol. 2008;211(Pt 11):1781-91. doi: 10.1242/jeb.013581
9. Bruce AS, Pichora-Fuller MK. Age-related changes in temporal processing: implications for speech perception. Semin Hear. 2001; 22(3): 227-40. doi: 10.1055/s-2001-15628
10. Chermak GD, Musiek FE. Central auditory processing disorders: new perspectives. San Diego: Singular Pub. Group; 1997.
11. Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Aging affects neural precision of speech encoding. J Neurosci. 2012;32(41):14156-64. doi: 10.1523/JNEUROSCI.2176-12.2012
12. Morais AA, Rocha-Muniz CN, Schochat E. Efficacy of auditory training in elderly subjects. Front Aging Neurosci. 2015;7:78. doi: 10.3389/fnagi.2015.00078
13. Ferguson MA, Henshaw H, Clark DP, Moore DR. Benefits of phoneme discrimination training in a randomized controlled trial of 50- to 74-year-olds with mild hearing loss. Ear Hear. 2014;35(4):e110-21. doi: 10.1097/AUD.0000000000000020
14. Glyde H, Hickson L, Cameron S, Dillon H. Problems hearing in noise in older adults: a review of spatial processing disorder. Trends Amplif. 2011;15(3):116-26. doi: 10.1177/1084713811424885
15. Anderson S, Jenkins K. Electrophysiologic assessment of auditory training benefits in older adults. Semin Hear. 2015;36(4):250-62. doi: 10.1055/s-0035-1564455
16. Kaplan-Neeman R, Muchnik C, Hildesheimer M, Henkin Y. Hearing aid satisfaction and use in the advanced digital era. Laryngoscope. 2012;122(9):2029-36. doi: 10.1002/lary.23404
17. Moon IJ, Won JH, Park MH, Ives DT, Nie K, Heinz MG, et al. Optimal combination of neural temporal envelope and fine structure cues to explain speech identification in background noise. J Neurosci. 2014;34(36):12145-54. doi: 10.1523/JNEUROSCI.1025-14.2014
18. Rennies J, Verhey JL, Fastl H. Comparison of loudness models for time-varying sounds. Acta Acustica united with Acustica. 2010;96(2):383-96. doi:10.3813/AAA.918287
19. Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BC. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci U S A. 2006;103(49):18866-9. doi: 10.1073/pnas.0607364103
20. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270(5234):303-4.
21. Foeller E, Feldman DE. Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol. 2004;14(1):89-95. doi: 10.1016/j.conb.2004.01.011
22. Webster DB, Webster M. Neonatal sound deprivation affects brain stem auditory nuclei Arch Otolaryngol. 1977;103(7):392-6.
23. Sur M, Garraghty PE, Roe AW. Experimentally induced visual projections into auditory thalamus and cortex. Science. 1988;242(4884):1437-41.
24. Luo H, Wang Y, Poeppel D, Simon JZ. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition. J Neurophysiol. 2007;98(6):3473-85. doi: 10.1152/jn.00342.2007
25. Anderson S, Kraus N. Auditory training: evidence for neural plasticity in older adults. Perspect Hear Hear Disord Res Res Diagn. 2013;17:37-57. doi: 10.1044/hhd17.1.37
26. Munro KJ, Blount J. Adaptive plasticity in brainstem of adult listeners following earplug-induced deprivation. J Acoust Soc Am. 2009;126(2):568-71. doi: 10.1121/1.3161829
27. Talebi H, Moossavi A, Lotfi Y, Faghihzadeh S. Effects of vowel auditory training on concurrent speech segregation in hearing impaired children. Ann Otol Rhinol Laryngol. 2015;124(1):13-20 doi: 10.1177/0003489414540604
28. Musiek FE, Shinn J, Hare C. Plasticity, auditory training, and auditory processing disorders. Semin Hear. 2002;23(4):263-76. doi: 10.1055/s-2002-35862
29. Cardon G, Campbell J, Sharma A. Plasticity in the developing auditory cortex: evidence from children with sensorineural hearing loss and auditory neuropathy spectrum disorder. J Am Acad Audiol. 2012;23(6):396-411. doi: 10.3766/jaaa.23.6.3
30. Pallas SL. Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci. 2001;24(7):417-23. doi: 10.1016/S0166-2236(00)01853-1
31. Eggermont JJ. The role of sound in adult and developmental auditory cortical plasticity. Ear Hear. 2008 ;29(6):819-29. doi: 10.1097/AUD.0b013e3181853030
32. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167-78
33. Huttenlocher PR, de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol. 1987;6(1):1-9.
34. Riddle DR, Katz LC, Lo DC. Focal delivery of neurotrophins into the central nervous system using fluorescent latex microspheres. Biotechniques. 1997;23(5):928-34, 936-7. doi: 10.2144/97235rr02
35. Krishnan A, Bidelman GM, Gandour JT. Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices. Hear Res. 2010;268(1-2):60-6. doi: 10.1016/j.heares.2010.04.016
36. Munakata Y, Pfaffly J. Hebbian learning and deve¬lopment. Developmental Science. 2004; 7: 141-48. doi: 10.1111/j.1467-7687.2004.00331.x
37. Chermak GD, Musiek FE. Central auditory processing disorders: new perspectives. 1st ed. San Diego: Singular Publishing Group, Inc; 1997.
38. Cheng Y, Jia G, Zhang Y, Hao H, Shan Y, Yu L, et al. Positive impacts of early auditory training on cortical processing at an older age. Proc Natl Acad Sci U S A. 2017;114(24):6364-6369. doi: 10.1073/pnas.1707086114
39. Knudsen EI. Experience shapes sound localization and auditory unit properties during development in the barn owl. In: Edelman GM, Gall EW, Cowan WM, editors. Auditory function: neurobiological bases of hearing. New York: John Wiley & Sons Inc; 1988. p. 137-52.
40. Gatehouse S, Noble W. The speech, spatial and qualities of hearing scale (SSQ). International journal of audiology. 2004;43(2):85-99. doi: 10.1080/14992020400050014
41. Bamiou D-E, Luxon LM. Auditory processing disorders. BMJ 2008;337:a2080. doi: 10.1136/bmj.a2080
42. Tremblay KL, Kraus N. Auditory training induces asymmetrical changes in cortical neural activity. J Speech Lang Hear Res. 2002;45(3):564-72. doi:10.1044/1092-4388(2002/045)
43. Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N. Auditory training improves neural timing in the human brainstem. Behav Brain Res. 2005;156(1):95-103. doi: 10.1016/j.bbr.2004.05.012
44. Hawkey DJC, Amitay S, Moore DR. Early and rapid perceptual learning. Nat Neurosci. 2004;7:1055-56.
45. Song JH, Skoe E, Banai K, Kraus N. Training to improve hearing speech in noise: biological mecha¬nisms. Cereb Cortex. 2012;22(5):1180-90. doi: 10.1093/cercor/bhr196
46. Santos RBF, Marangoni AT, de Andrade AN, Prestes R, Gil D. Effects of auditory training in individuals with high-frequency hearing loss. Clinics (Sao Paulo). 2014;69(12):835-40. doi: 10.6061/clinics/2014(12)08
47. Lotfi Y, Moosavi A, Zamiri Abdollahi F, Bakhshi E, Sadjedi H. Effects of an auditory lateralization training in children suspected to central auditory processing disorder. J Audiol Otol. 2016;20(2):102-8. doi: 10.7874/jao.2016.20.2.102
48. Heidari A, Moossavi A, Yadegari F, Bakhshi E, Ahadi M. Effects of age on speech-in-noise identification: subjective ratings of hearing difficulties and encoding of fundamental frequency in older adults. J Audiol Otol. 2018;22(3):134-9. doi: 10.7874/jao.2017.00304
49. Delphi M, Zamiri Abdollahi F. Dichotic training in children with auditory processing disorder. Int J Pediatr Otorhinolaryngol. 2018;110:114-17 doi: 10.1016/j.ijporl.2018.05.014
50. McArthur GM, Ellis D, Atkinson CM, Coltheart M. Auditory processing deficits in children with reading and language impairments: Can they (and should they) be treated? Cognition. 2008;107(3):946-77. doi: 10.1016/j.cognition.2007.12.005
51. Stevens C, Fanning J, Coch D, Sanders L, Neville H. Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophy¬siological evidence from language-impaired and typically developing children. Brain Res. 2008;1205:55-69. doi: 10.1016/j.brainres.2007.10.108
52. Putter-Katz H, Adi-Bensaid L, Feldman I, Miran D, Kushnir D, Muchnik C, et al. Treatment and evaluation indices of auditory processing disorders. Semin Hear. 2002;23(4):357-64. doi: 10.1055/s-2002-35884
53. Tremblay K, Kraus N, Carrell TD, McGee T. Central auditory system plasticity: Generalization to novel stimuli following listening training. J Acoust Soc Am. 1997;102:3762-73. doi: 10.1121/1.420139
54. Bronus K, El Refaie A, Pryce H. Auditory training and adult rehabilitation: a critical review of the evidence. Glob J Health Sci. 2011;3(1):49-63. doi: 10.5539/gjhs.v3n1p49
55. Jafari Z, Malayeri S, Rostami R. Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder. Clin Neurophysiol. 2015;126(2):
325-32. doi: 10.1016/j.clinph.2014.06.007
56. Krishnamurti S, Forrester J, Rutledge C, Holmes GW. A case study of the changes in the speech-evoked auditory brainstem response associated with auditory training in children with auditory processing disorders. Int J Pediatr Otorhinolaryngol. 2013;77(4):594-604 doi: 10.1016/j.ijporl.2012.12.032
57. Marangoni AT, Suriano Íc, Burit AKL, Gil D. Formal auditory training with individuals after traumatic brain injury. Health. 2017;9:975-86. doi: 10.4236/health.2017.96070
58. Skoe E, Kraus N. Auditory brain stem response to complex sounds: a tutorial. Ear Hear. 2010;31(3):302-24. doi: 10.1097/AUD.0b013e3181cdb272
59. Kraus N, Nicol T. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system. Trends in neurosciences. 2005; 28: 176-81 doi: 10.1016/j.tins.2005.02.003
60. Sweetow RW, Sabes JH. The need for and development of an adaptive listening and communication enhancement (LACE) program. J Am Acad Audiol. 2006;17(8):538-58.
61. Fowler CG, Horn JH. Frequency dependence of binaural interaction in the auditory brainstem and middle latency responses. Am J Audiol. 2012;21(2):190-8. doi: 10.1044/1059-0889(2012/12-0006)
62. Kacelnik O, Nodal FR, Parsons CH, King AJ. Training-induced plasticity of auditory localization in adult mammals. PLoS Biol. 2006;4(4):e71. doi: 10.1371/journal.pbio.0040071
63. Musiek FE, Geurkink NA, Weider DJ, Donnelly K. Past, present, and future applications of the auditory middle latency response. Laryngoscope. 1984;94(12 Pt 1):1545-53. doi: 10.1288/00005537-198412000-00002
64. Lotfi Y, Moosavi A, Zamiri Abdollahi F, Bakhshi E. Auditory lateralization training effects on binaural interaction component of middle latency response in children suspected to central auditory processing disorder. Indian J Otolaryngol Head Neck Surg. 2018. doi: 10.1007/s12070-018-1263-1
65. Özdamar Ö, Kraus N. Auditory middle-latency responses in humans. Audiology : official organ of the International Society of Audiology. 1983;22(1):34-49.
66. Schochat E, Musiek FE, Alonso R, Ogata J. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder. Braz J Med Biol Res. 2010;43(8):777-8 doi: 10.1590/S0100-879X2010007500069
67. Chambers RD. Differential age effects for components of the adult auditory middle latency response. Hear Res. 1992;58(2):123-31. doi: 10.1016/0378-5955(92)90122-4
68. Tremblay K, Kraus N, McGee T. The time course of auditory perceptual learning: neurophysiological changes during speech-sound training. Neuroreport. 1998;9(16):3557-60.
69. Kraus N, McGee T, Carrell TD, King C, Tremblay K, Nicol T. Central auditory system plasticity associated with speech discrimination training. J Cogn Neurosci. 1995;7(1):25-32. doi: 10.1162/jocn.1995.7.1.25
70. Reinke KS, He Y, Wang C, Alain C. Perceptual learning modulates sensory evoked response during vowel segregation. Brain Res Cogn Brain Res. 2003;17(3):781-91.
71. Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M. The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl. 1987;40:125-31.
72. Csépe V. On the origin and development of the mismatch negativity. Ear Hear. 1995;16(1):91-104.
73. Amenedo E, Escera C. The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. Eur J Neurosci. 2000;12(7):2570-4.
74. McGee T, Kraus N, Nicol T. Is it really a mismatch negativity? An assessment of methods for determining response validity in individual subjects. Electroencephalogr Clin Neurophysiol. 1997;104(4):359-68.
75. Ponton CW, Don M, Eggermont JJ, Kwong B. Integrated mismatch negativity (MMNi): a noise-free representation of evoked responses allowing single-point distribution-free statistical tests. Electroencephalogr Clin Neurophysiol. 1997;104(2):143-50.
76. Hirayasu Y, Samura M, Ohta H, Ogura C. Sex effects on rate of change of P300 latency with age. Clin Neurophysiol. 2000;111(2):187-94. doi: 10.1016/S1388-2457(99)00233-3
77. Patterson JV, Michalewski HJ, Starr A. Latency variability of the components of auditory event-related potentials to infrequent stimuli in aging, Alzheimer-type dementia, and depression. Electroencephalogr Clin Neurophysiol. 1988;71(6):450-60.
78. Polich J. Meta-analysis of P300 normative aging studies. Psychophysiology. 1996;33(4):334-53.
79. Alonso R, Schochat E. The efficacy of formal auditory training in children with (central) auditory processing disorder: behavioral and electrophysiological evaluation. Braz J Otorhinolaryngol. 2009;75(5):726-32. doi: 10.1016/S1808-8694(15)30525-5
80. Edelson SM, Arin D, Bauman M, Lukas SE, Rudy JH, Sholar M, et al. Auditory integration training: a double-blind study of behavioral and electrophysiological effects in people with autism. Focus on Autism and Other Developmental Disabilities. 1999;14(2):73-81. doi: 10.1177/108835769901400202 81
81. Hargus SE, Gordon-Salant S. Accuracy of speech intelligibility index predictions for noise-masked young listeners with normal hearing and for elderly listeners with hearing impairment. J Speech Hear Res. 1995;
38(1):234-43. doi: 10.1044/jshr.3801.234
82. Souza PE, Boike KT, Witherell K, Tremblay K. Prediction of speech recognition from audibility in older listeners with hearing loss: effects of age, amplification, and background noise. J Am Acad Audiol. 2007;18(1):54-65.
83. Gordon-Salant S. Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev. 2005;42(4 Suppl 2):9-24.
84. Parthasarathy A, Bartlett EL. Age-related auditory deficits in temporal processing in F-344 rats. Neuroscience. 2011;192:619-30. doi: 10.1016/j.neuroscience.2011.06.042
85. Shinn-Cunningham BG, Best V. Selective attention in normal and impaired hearing. Trends Amplif. 2008;12(4):283-99. doi: 10.1177/1084713808325306
86. Gordon-Salant S, Yeni-Komshian G, Fitzgibbons P. The role of temporal cues in word identification by younger and older adults: effects of sentence context. J Acoust Soc Am. 2008;124(5):3249-60. doi: 10.1121/1.2982409
87. Fogerty D, Humes LE, Kewley-Port D. Auditory temporal-order processing of vowel sequences by young and elderly listeners. J Acoust Soc Am. 2010;127(4):2509-520. doi: 10.1121/1.3316291
88. Grose JH, Mamo SK.. Processing of temporal fine structure as a function of age. Ear Hear. 2010;31(6):755-60. doi: 10.1097/AUD.0b013e3181e627e7
89. Fitzgibbons PJ, Gordon-Salant S. Age effects on duration discrimination with simple and complex stimuli. J Acoust Soc Am. 1995;98(6):3140-5.
90. Horwitz AR, Ahlstrom JB, Dubno JR. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing. J Acoust Soc Am. 2011;130(5):2928-38. doi: 10.1121/1.3643829
91. Schmiedt RA, Mills JH, Boettcher FA. Age-related loss of activity of auditory-nerve fibers. J Neurophysiol. 1996;76(4):2799-803. doi: 10.1152/jn.1996.76.4.2799
92. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33(34):13686-94. doi: 10.1523/JNEUROSCI.1783-13.2013
93. Walton JP, Frisina RD, O'Neill WE. Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J Neurosci. 1998;18(7):2764-76.
94. Fritz J, Elhilali M, Shamma S. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hear Res. 2005;206(1-2):159-76. doi: 10.1016/j.heares.2005.01.015
95. Molloy K, Moore DR, Sohoglu E, Amitay S. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning. PLoS One. 2012;7(5):e36929. doi: 10.1371/journal.pone.0036929
96. Martin JS, Jerger JF. Some effects of aging on central auditory processing. J Rehabil Res Dev. 2005;42(4 Suppl 2):25-44.
97. Chandrasekaran B, Kraus N. The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology. 2010;47(2):236-46. doi: 10.1111/j.1469-8986.2009.00928.x
98. Hornickel J, Knowles E, Kraus N. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hear Res. 2012;284(1-2):52-8. doi: 10.1016/j.heares.2011.12.005
99. Song JH, Nicol T, Kraus N. Test-retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol. 2011;122(2):346-55. doi: 10.1016/j.clinph.2010.07.009
100. Skoe E, Kraus N. Hearing it again and again: on-line subcortical plasticity in humans. PLoS One. 2010;5(10):e13645. doi: 10.1371/journal.pone.0013645
Files | ||
Issue | Vol 28 No 3 (2019) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/avr.v28i3.1222 | |
Keywords | ||
Auditory training; electrophysiology; plasticity; aging |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |