Research Article

Gaps-in-noise test performance in subjects with type 2 diabetes mellitus

Abstract

Background and Aim: Hearing loss is one of the complications of the type 2 diabetes mellitus, which commonly affects the central auditory processing. Gap in noise (GIN) test is an appropriate clinical tool for evaluating temporal auditory processing. The purpose of the present research was to compare the results of the GIN test in the diabetic patients with non-diabetic participants.
Methods: In this cross-sectional study, 30 subjects with type 2 diabetes (mean age=43.33, SD=4.7 years) and 30 normal hearing subjects (mean age=41.26, SD=6.2 years) were examined by the GIN test. The approximate GIN threshold and the percentage of correct answers were measured in all individuals.
Results: The findings showed an increase in the approximate GIN threshold and a decrease in the percentage of correct answers in the diabetic group in comparison with the non-diabetic group (p<0.05). In addition, the GIN threshold in the right ear was lower than the left one in the case group (p<0.05).
Conclusion: According to the derived results, the patients with type 2 diabetes mellitus appear to have defects in the temporal resolution domain the auditory stimuli and this disorder affects left ear more than right ear.

1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-21. doi: 10.1016/j.diabres.2011.10.029
2. Larijani B, Zahedi F. [Epidemiology of diabetes mellitus in Iran]. Iranian Journal of Diabetes and Metabolism. 2001;1(1):1-8. Persian.
3. Makishima K, Tanaka K. Pathological changes of the inner ear and central auditory pathway in diabetics. Ann Otol Rhinol Laryngol. 1971;80(2):218-28. doi: 10.1177/000348947108000208
4. Young MJ, Boulton AJM, Macleod AF, et al. A multicenter study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia. 1993;36(2):150-4.
5. Frisina ST, Mapes F, Kim S, Frisina DR, Frisina RD. Characterization of hearing loss in aged type II diabetics. Hear Res. 2006;211(1-2):103-13. doi: 10.1016/j.heares.2005.09.002
6. Szalat A, Raz I. Metabolic syndrome and microangiopathy. Isr Med. Assoc J. 2006;8(6):424-5.
7. Taylor IG, Irwin J. Some audiological aspects of diabetes mellitus. J Laryngol Otol. 1978;92(2):99-113.
8. Nakae S, Tachibana M. The cochlea of the spontaneously diabetic mouse. II. Electron microscopic observations of non-obese diabetic mice. Arch Otorhinolaryngol. 1986;243(5):313-6.
9. Malpas S, Blake P, Bishop R, Robinson B, Johnson R. Does autonomic neuropathy in diabetes cause hearing deficits? N Z Med J. 1989;102(874):434-5.
10. Tay HL, Ray N, Ohri R, Frootko NJ. Diabetes mellitus and hearing loss. Clin Otolaryngol. 1995;20(2):130-4. doi: 10.1111/j.1365-2273.1995.tb00029.x
11. Jorgensen MB, Buch NH. Studies on inner-ear function and cranial nerves in diabetics. Acta Otolaryngol. 1961;53:350-64.
12. Ren J, Zhao P, Chen L, Xu A, Brown SN, Xiao X. Hearing loss in middle-aged subjects with type 2 diabetes mellitus. Arch Med Res. 2009;40(1):18-23. doi: 10.1016/j.arcmed.2008.10.003
13. Durmus C, Yetiser S, Durmus O. Auditory brainstem evoked responses in insulin-dependent (ID) and non-insulin-dependent (NID) diabetic subjects with normal hearing. Int J Audiol. 2004;43(1):29-33. doi: 10.1080/14992020400050005
14. Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil. 2014;2(2):125. doi: 10.4172/2329-6887.1000125
15. Guerci B, Kearney-Schwartz A, Böhme P, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes. Part 1: physiology and methods for exploring the endo¬thelial function. Diabetes Metab. 2001;27(4 Pt 1):425-34.
16. Samelli AG, Schochat E. The gaps-in-noise test: gap detection thresholds in normal-hearing young adults. Int J Audiol. 2008;47(5):238-45. doi: 10.1080/14992020801908244
17. Sbinn J. Temporal processing tests. In: Museik F, Chermak GD, editors. Auditory neuroscience and diagnosis.1st ed. San Diego: Plural Publishing; 2007. p. 405-34. (Handbook of (central) auditory processing disorder; vol 1).
18. Shinn JB, Chermak GD, Musiek FE. GIN (Gaps-In-Noise) performance in the pediatric population. J Am Acad Audiol. 2009;20(4):229-38. doi: 10.3766/jaaa.20.4.3
19. Iliadou VV, Bamiou DE, Chermak GD, Nimatoudis I. Comparison of two tests of auditory temporal resolution in children with central auditory processing disor¬der, adults with psychosis, and adult professional musicians. Int J Audiol. 2014;53(8):507-13. doi: 10.3109/14992027.2014.900576
20. Musiek FE, Shinn JB, Jirsa R, Bamiou DE, Baran JA, Zaida E. GIN (Gaps-In-Noise) test performance in subjects with confirmed central auditory nervous system involvement. Ear Hear. 2005;26(6):608-18. doi: 10.1097/01.aud.0000188069.80699.41
21. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62-9. doi: 10.2337/dc10-S062
22. Valadbeigi A, Rouhbakhsh N, Mohammadkhani G, Jalilvand Karimi L, Jalaie S. [The capability of gap in noise detection in patients with multiple sclerosis]. Audiol. 2012;21(4):10-8. Persian.
23. Dias KZ, Jutras B, Acrani IO, Pereira LD. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age. Int J Pediatr Otorhinolaryngol. 2012;76(2):174-8. doi: 10.1016/j.ijporl.2011.10.022
24. Walton JP, Frisina RD, Ison JR, O'Neill WE. Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. J Comp Physiol A. 1997;181(2):161-76. doi: 10.1007/s003590050
25. Efron R, Yund EW, Nichols D, Crandall PH. An ear asymmetry for gap detection following anterior temporal lobectomy. Neuropsychologia. 1985;23(1):43-50. doi: 10.1016/0028-3932(85)90042-9
26. Donald MW, Bird CE, Lawson JS, Letemendia FJ, Monga TN, Surridge DH, et al. Delayed auditory brainstem responses in diabetes mellitus. J Neurol Neurosurg Psychiatry. 1981;44(7):641-4. doi: 10.1136/jnnp.44.7.641
27. Durmus C, Yetiser S, Durmus O. Auditory brainstem evoked responses in insulin-dependent (ID) and non-insulin-dependent (NID) diabetic subjects with normal hearing. Int J Audiol. 2004;43(1):29-33. doi: 10.1080/14992020400050005
28. Bamiou DE, Musiek FE, Stow I, Stevens J, Cipolotti L, Brown MM, et al. Auditory temporal processing deficits in patients with insular stroke. Neurology. 2006;67(4):614-9. doi: 10.1212/01.wnl.0000230197.40410.db
29. Zaidan E, Garcia AP, Tedesco ML, Baran JA. [Perfor¬mance of normal young adults in two temporal resolution tests]. Pro Fono. 2008;20(1):19-24. Portuguese. doi: 10.1590/S0104-56872008000100004
30. Amaral MI, Colella-Santos MF. Temporal resolution: performance of school-aged children in the GIN - Gaps-in-noise test. Braz J Otorhinolaryngol. 2010;76(6):745-52. doi: 10.1590/S1808-86942010000600013
31. Mohamadkhani G, Nilforoushkhoshk MH, Zadeh Mohammadi A, Faghihzadeh S, Sepehrnejhad M. [Comparison of gap in noise test results in musicians and non-musician controls]. Audiol. 2010;19(2):33-8. Persian.
Files
IssueVol 27 No 4 (2018) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v27i4.125
Keywords
Type 2 diabetes mellitus; gaps in noise test; central auditory processing; hearing loss

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Pirasteh E, Esmailzadeh N, Absalan A, Hamidi Nahrani M, Nosratzehi M, Nosratzehi S. Gaps-in-noise test performance in subjects with type 2 diabetes mellitus. Aud Vestib Res. 2018;27(4):200-207.