Research Article

Effects of age, sex, ears, and weight on high frequency tympanometry 1000 Hz characteristics in neonates with normal transient evoked otoacoustic emission


Background and Aim: Middle ear of neonates is mass-dominant. Therefore, by increasing the frequency of probe tone from 226 Hz to 1000 Hz, middle ear abnormalities can be detected better. This study aimed to evaluate the effect of age, sex, ear and weight on the characteristics of 1000 Hz tympanometry in neonates.
Methods: A total of 255 neonates (136 boys and 119 girls) aged from 1 to 90 days, with normal transient evoked otoacoustic emissionat least in one ear were studied. Compensated static admittance at middle ear pressure (YPP) and admittance at pressure of +200 daPa (Y200) were measured with 1000 Hz tympanometry.
Results: Mean (SD) YPP and Y200 values were 0.97 (0.48) and 2.07 (0.46) mmho in the right ears and 0.98 (0.53) and 2.05 (0.48) mmho in the left ears, respectively. In both ears, gender had no significant effect on compensated YPP, but Y200 values were significantly different between girls and boys (p<0.05). Ear did not affect the YPP and Y200 values. There was also a linear relationship between age and weight with compensated YPP and Y200 values, so that compensated YPP and Y200 values increased with higher weight and age.
Conclusion: Age and weight by affecting the physical and impedance characteristics of ear canal and tympanic membrane, can also affect the characteristics of the high frequency tympanometry. Lack of gender effects on compensated YPP and its effect on Y200 can be attributed to the difference in compliance between tympanic membrane and ear canal in boys and girls.

1. Kei J, Allison-Levick J, Dockray J, Harrys R, Kirkegard C, Wong J, et al. High-frequency (1000 Hz) tympanometry in normal neonates. J Am Acad Audiol. 2003;14(1):20-8.
2. Emadi M, Rezaei M, Hamidi Nahrani M, Bolandi M. High frequency tympanometry (1,000 Hz) for neonates with normal and abnormal transient evoked otoacoustic emissions. J Audiol Otol. 2016; 20(3): 153–157. doi: 10.7874/jao.2016.20.3.153
3. Mazlan R, Kei J, Hickson L, Khan A, Gavranich J, Linning R. High frequency (1000 Hz) tympanometry findings in newborns: normative data using a component compensated admittance approach. Australian and New Zealand Journal of Audiology, The. 2009;31(1):15-23. doi: 10.1375/audi.31.1.15
4. Suckfüll M, Schneeweiss S, Dreher A, Schorn K. Evaluation of TEOAE and DPOAE measurements for the assessment of auditory thresholds in sensorineural hearing loss. Acta Otolaryngol. 1996;116(4):528-33.
5. Holte L, Margolis RH, Cavanaugh RM Jr. Develop¬mental changes in multifrequency tympanograms. Audiology. 1991;30(1):1-24.
6. Swanepoel de W, Werner S, Hugo R, Louw B, Owen R, Swanepoel A. High frequency immittance for neonates: a normative study. Acta Otolaryngol. 2007;127(1):49-56. doi: 10.1080/00016480600740563
7. Keefe DH, Levi E. Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear Hear. 1996;17(5):361-73.
8. Hunter LL, Margolis RH. Multifrequency tympanometry: current clinical application. Am J Audiol. 1992;1(3):33-43. doi: 10.1044/1059-0889.0103.33
9. Meyer SE, Jardine CA, Deverson W. Developmental changes in tympanometry: a case study. Br J Audiol. 1997;31(3):189-95.
10. Murakoshi M, Takeda S, Wada H. Analysis by finite element method of dynamic characteristics of the external ear canal in neonates. Journal of Biomechanical Science and Engineering. 2017;12(2):16-00596-16-. doi: 10.1299/jbse.16-00596
11. Alaerts J, Luts H, Wouters J. Evaluation of middle ear function in young children: clinical guidelines for the use of 226- and 1,000-Hz tympanometry. Otol Neurotol. 2007;28(6):727-32.
12. Keith RW. Impedance audiometry with neonates. Arch Otolaryngol. 1973;97(6):465-467. doi: 10.1001/archotol.1973.00780010479007
13. Sprague BH, Wiley TL, Goldstein R. Tympanometric and acoustic-reflex studies in neonates. J Speech Hear Res. 1985;28(2):265-72.
14. Mazlan R, Kei J, Hickson L, Stapleton C, Grant S, Lim S, et al. High frequency immittance findings: newborn versus six-week-old infants. Int J Audiol. 2007;46(11):711-7. doi: 10.1080/14992020701525858
15. Wiley TL, Cruickshanks KJ, Nondahl DM, Tweed TS. Aging and middle ear resonance. J Am Acad Audiol. 1999;10(4):173-9.
16. Margolis RH, Goycoolea HG. Multifrequency tympanometry in normal adults. Ear and Hearing. 1993;14(6):408-13.
17. Holte L. Aging effects in multifrequency tympanometry. Ear Hear. 1996;17(1):12-8.
18. Shahnaz N, Davies D. Standard and multifrequency tympanometric norms for Caucasian and Chinese young adults. Ear Hear. 2006;27(1):75-90. doi: 10.1097/01.aud.0000194516.18632.d2
19. Hanks WD, Rose KJ. Middle ear resonance and acoustic immittance measures in children. J Speech Hear Res. 1993;36(1):218-22.
20. Dessai TD, Mereen RB, Anupama PS. Tympanometry in neonates- a comparative study. Acad J Ped Neonatol. 2017;3(1):555604. doi: 10.19080/AJPN.2017.03.555604
21. Shahnaz N, Miranda T, Polka L. Multifrequency tympanometry in neonatal intensive care unit and well babies. J Am Acad Audiol. 2008;19(5):392-418.
22. Weichbold V, Nekahm-Heis D, Welzl-Mueller K. Universal newborn hearing screening and postnatal hearing loss. Pediatrics. 2006;117(4):e631-6. doi: 10.1542/peds.2005-1455
23. Margolis RH, Bass-Ringdahl S, Hanks WD, Holte L, Zapala DA. Tympanometry in newborn infants--1 kHz norms. J Am Acad Audiol. 2003;14(7):383-92.
24. McPherson B, Smyth V, Scott J. External ear resonance as a screening technique in children with otitis media with effusion. Int J Pediatr Otorhinolaryngol. 1993;25(1-3):81-9.
25. Munro KJ, Howlin EM. Comparison of real-ear to coupler difference values in the right and left ear of hearing aid users. Ear Hear. 2010;31(1):146-50. doi: 10.1097/AUD.0b013e3181b8399b
26. de Moraes TF, Macedo Cde C, Feniman MR. Multifrequency tympanometry in infants. Int Arch Otorhinolaryngol. 2012;16(2):186-94. doi: 10.7162/S1809-97772012000200006
27. Palmu A, Puhakka H, Rahko T, Takala AK. Diagnostic value of tympanometry in infants in clinical practice. Int J Pediatr Otorhinolaryngol. 1999;49(3):207-13.
28. Roush J, Bryant K, Mundy M, Zeisel S, Roberts J. Developmental changes in static admittance and tympanometric width in infants and toddlers. J Am Acad Audiol. 1995;6(4):334-8.
29. Lindeman P, Holmquist J, Aberg B. Ear drum mobility and middle ear volume measured with tympanometry. Scand Audiol. 1984;13(3):147-50.
30. Palva T, Northrop C, Ramsay H. Spread of amniotic fluid cellular content within the neonate middle ear. Int J Pediatr Otorhinolaryngol. 1999;48(2):143-53.
31. Adel Ghahraman M, Samimi Ardestani SH, Sadeghniiat Haghighi K. Eustachian tube dysfunction in patients with severe sleep disordered breathing: evidence from inflation-deflation test. Aud Vest Res. 2016;25(4):215-20.
32. Judipour Z, Alimalayeri F, Bagheri S, Bazzi A, Judipour M, Judipour M. [A Survey on anthropometric parameters of neonates at birth and some effective demographic factors in sistan region]. JIUMS. 2015;23(4):106-13. Persian.
33. Bolandi Shirejini M, Farahani A, Nazeri A. The app¬lication of subjective visual vertical in balance system disorders. Aud Vest Res. 2018;27(1):1-11.
34. Hebb AO, Cusimano MD. Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery. 2001;49(5):1166-84; discussion 1184-6.
IssueVol 27 No 2 (2018) QRcode
SectionResearch Article(s)
Newborns age factors sex factors weight factors acoustic impedance test

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Bolandi Shirejini M, Emadi M, Farahani A, Akbarzadeh Baghban A. Effects of age, sex, ears, and weight on high frequency tympanometry 1000 Hz characteristics in neonates with normal transient evoked otoacoustic emission. Aud Vestib Res. 2018;27(2):72-79.