Auditory attention: foundations, theories, and mechanisms
Abstract
Background and Aim: There are four fundamental processes of attention: working memory, topdown sensitivity control, competitive selection, and automatic bottom-up filtering for salient stimuli.Each process makes an essential contribution to attention. Voluntary control operates on the first three processes in a recurrent loop. We reviewed comprehensive researches, theories, mechanisms, and central nervous system functions of auditory attention.
Methods: In this study, publications on auditory attention from 1953 to 2012 in PubMed, Scopus, ProQuest, Iran Medex, and Goole scholar were reviewed. Keywords were auditory attention and related words.
Conclusion: In general, auditory attention plays an important role in auditory processing and modulates this process from cochlea to auditory cortex through its four primary components.
2. Dalton P, Spence C. Selective attention in vision, audition, and touch. In: Learning and memory: a comprehensive reference. Byrne J, editor. Oxford: Elsevier; 2008. p. 243-57.
3. Mayer AR, Harrington D, Adair JC, Lee R. The neural networks underlying endogenous auditory covert orienting and reorienting. Neuroimage. 2006;30(3):938-49.
4. Wu CT, Weissman DH, Roberts KC, Woldorff MG. The neural circuitry underlying the executive control of auditory spatial attention. Brain Res. 2007;1134(1):187-98.
5. Cherry EC. Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am. 1953;25(5):975-9.
6. Cherry EC, Taylor WK. Some further experiments upon the recognition of speech, with one and with two ears. J Acoust Soc Am. 1954;26(4):554-9.
7. Moray N. Attention in dichotic listening: affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology. 1959;11:56-60.
8. Corteen RS, Dunn D. Shock-associated words in a nonattended message: a test for momentary awareness. J Exp Psychol Gen. 1974;102(6):1143-4.
9. Driver J. A selective review for selective attention research from the past century. Br J Psychol. 2001;92 Part 1:53-78.
10. Deutsch JA, Deutsch D. Attention: some theoretical considerations. Psychology Review. 1963;70:80-90.
11. Treisman A, Kahneman D, Burkell J. Perceptual objects and the cost of filtering. Percept Psychophys. 1983;33(6);527-32.
12. Johnston WA, Heinz SP. Depth of nontarget processing in an attention task. J Exp Psychol Hum Percept Perform. 1979;5(1):168-75.
13. Lavie N. Distracted and confused?: selective attention under load. Trends Cogn Sci. 2005;9(2):75-82.
14. Lavie N, De Fockert J. The role of working memory in attentional capture. Psychon Bull Rev. 2005;12(4):669-74.
15. Conway AR, Cowan N, Bunting MF. The cocktail party phenomenon revisited: the importance of working memory capacity. Psychon Bull Rev. 2001;8(2):331-5.
16. Eramudugolla R, Irvine DR, McAnally KI, Martin RL, Mattingley JB. Directed attention eliminates ‘change deafness’ in complex auditory scenes. Curr Biol. 2005;15(12):1108-13.
17. Shinn-Cunningham BG. Object-based auditory and visual attention. Trends Cogn Sci. 2008;12(5):182-6.
18. Pugh KR, offwitz BA, Shaywitz SE, Fulbright RK, Byrd D, Skudlarski P, et al. Auditory selective attention: an fMRI investigation. Neuroimage. 1996;4(3 Pt 1):159-73.
19. Frith CD, Friston KJ. The role of the thalamus in "top down" modulation of attention to sound. Neuroimage. 1996;4(3 Pt 1):210-5.
20. Hugdahl K, Law I, Kyllingsbæk S, Brønnick K, Gade A, Paulson OB. Effects of attention on dichotic listening: an O-PET study. Hum Brain Mapp. 2000;10(2):87-97.
21. Jäncke L, Specht K, Shah JN, Hugdahl K. Focused attention in a simple dichotic listening task: an fMRI experiment. Brain Res Cogn Brain Res. 2003;16(2):257-66.
22. Talebi H, Tahaei A, Akbari M, Kamali M. The comparison of auditory selective attention and auditory divided attention between patients with cerebrovascular accident and normal cases. Journal of Rehabilitation. 2007;8:17-24. Persian.
23. Lotfi Y, Talebi H, Mehrkian S, Khodaei MR, Faghihzadeh S. Effect of cognitive and central auditory impairments on satisfaction of amplification in hearing impaired older adults. Iranian Journal of Aging. 2012;7(25):53-46. Persian.
24. Sarter M, Turchi J. Age- and dementia-associated impairments in divided attention: psychological constructs, animal models, and underlying neuronal mechanisms. Dement Geriatr Cogn Disord. 2002;13(1):46-58.
25. Knudsen EI. Fundamental components of attention. Annu Rev Neurosci. 2007;30:57-78.
26. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193-222.
27. Egeth HE, Yantis S. Visual attention: control, representation, and time course. Annu Rev Psychol. 1997;48:269-97.
28. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219-27.
29. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202.
30. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829-39.
31. Genovesio A, Brasted PJ, Wise SP. Representation of future and previous spatial goals by separate neural populations in prefrontal cortex. J Neurosci. 2006;26(27):7305-16.
32. Yoshida W, Ishii S. Resolution of uncertainty in prefrontal cortex. Neuron. 2006;50(5):781-9.
33. LaBar KS, Gitelman DR, Parrish TB, Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage. 1999;10(6):695-704.
34. Schumacher EH, Lauber E, Awh E, Jonides J, Smith EE, Koeppe RA. PET evidence for an amodal verbal working memory system. Neuroimage. 1996;3(2):79-88.
35. Smith EE, Jonides J, Koeppe RA. Dissociating verbal and spatial working memory using PET. Cereb Cortex. 1996;6(1):11-20.
36. Constantinidis C, Wang XJ. A neural circuit basis for spatial working memory. Neuroscientist. 2004;10(6):553-65.
37. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61(2):331-49.
38. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173(3997):652-4.
39. Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci. 1996;16(16):5154-67.
40. Suzuki WA, Miller EK, Desimone R. Object and place memory in the macaque entorhinal cortex. J Neurophysiol. 1997;78(2):1062-81.
41. Curtis CE. Prefrontal and parietal contributions to spatial working memory. Neuroscience. 2006;139(1):173-80.
42. Fuster JM. Memory in the cerebral cortex: an emprical approach to neural networks in the human and nonhuman primate.1st ed. Cambridge, MA: MIT Press; 1999.
43. Powell KD, Goldberg ME. Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J Neurophysiol. 2000;84(1):301-10.
44. Saxe D, Malleret G, Vronskaya S, Mendez I, Garcia AD, Sofroniew MV, et al. Paradoxical influence of hippocampal neurogenesis on working memory. Proc Natl Acad Scie U S A. 2007;104(11):4642-6.
45. Fadda F, Melis F, Stancampiano R. Increased hippocampal acetylcholine release during a working memory task. Eur J Pharmacol. 1996;307(2):R1-2.
46. Miller BT, D’Esposito M. Searching for “the top” in top-down control. Neuron. 2005;48(4):535-8.
47. Andersen R, Meeker D, Pesaran B, Breznen B, Buneo C, Scherberger H. Sensory-motor transformations in the posterior parietal cortex. In Gazzaniga MS, editor. The cognitive neurosciences III. Cambridge, MA: MIT Press; 2004. p. 463-74.
48. Colby CL, Goldberg ME. Space and attention in parietal cortex. Annu Rev Neurosci. 1999;22:319-49.
49. Müller JR, Philiastides MG, Newsome WT. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc Natl Acad Sci U S A. 2005;102(3):524-9.
50. Shomstein S, Behrmann M. Cortical systems mediating visual attention to both objects and spatial locations. Proc Natl Acad Sci U S A. 2006;103(30):11387-92.
51. Shomstein S, Yantis S. Control of attention shifts between vision and audition in human cortex. J Neurosci. 2004;24(47):10702-6.
52. Mesulam MM. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1325-46.
53. Maunsell JH, Treue S. Feature-based attention in visual cortex. Trends Neurosci. 2006;29(6):317-22.
54. Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993;363(6427):345-7.
55. Reynolds JH, Desimone R. Interacting roles of attention and visual salience in V4. Neuron. 2003;37(5):853-63.
56. Treue S, Martínez Trujillo JC. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 1999;399(6736):575-9.
57. Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature 2003;423(6937):288-93.
58. Khayat PS, Spekreijse H, Roelfsema PR. Attention lights up new object representations before the old ones fade away. J Neurosci. 2006;26(1):138-42.
59. McAlonan K, Cavanaugh J, Wurtz RH. Attentional modulation of thalamic reticular neurons. J Neurosci. 2006;26(16):4444-50.
60. Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci. 2001;2(3):194-203.
61. Remington RW, Johnston JC, Yantis S. Involuntary attentional capture by abrupt onsets. Percept Psychophys. 1992;51(3):279-90.
62. Bisley JW, Goldberg ME. Neuronal activity in the lateral intraparietal area and spatial attention. Science. 2003;299(5603):81-6.
63. Everling S, Tinsley CJ, Gaffan D, Duncan J. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nat Neurosci. 2002;5(7):671-6.
64. Luck SJ, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997;77(1):24-42.
65. Treue S, Maunsell JH. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci. 1999;19(17):7591-602.
66. Womelsdorf T, Anton-Erxleben K, Pieper F, Treue S. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat Neurosci. 2006;9(9):1156-60.
67. Lee D. Coherent oscillations in neuronal activity of the supplementary motor area during a visuomotor task. J Neurosci. 2003;23(17):6798-809.
68. Major G, Tank D. Persistent neural activity: prevalence and mechanisms. Curr Opin Neurobiol. 2004;14(6):675-84.
69. Näätänen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci. 1990;13(02):201-33.
70. Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science. 1973;182(4108):177-80.
71. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118(12):2544-90.
Issue | Vol 22 No 2 (2013) | |
Section | Review Article(s) | |
Keywords | ||
Auditory attention working memory top-down process competitive selection automatic bottom-up filtering |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |