Research Article

Motion sickness and its impact on auditory spatial perception and working memory

Abstract

Background and aim: Motion sickness, characterized by conflicting sensory signals, negatively impacts attention and cognitive functions. This study investigated the effects of motion sickness on auditory spatial perception and working memory in adults with normal hearing.
Methods: A Standard group comparison was conducted on  100 adults with motion sickness, classified into three groups—normal-minimal, mild-moderate, and severe—based on Motion Sickness Susceptibility Questionnaire (MSSQ)-short scores. Standardized assessments were used to evaluate auditory spatial perception, including interaural time difference (ITD), interaural level difference (ILD), and the Virtual Acoustic Space Identification (VASI) test, along with working memory assessed through the forward digit span and 2-back test. ITD and ILD tests involved a discrimination task using psychoacoustic staircase procedure, VASI required identification of virtual locations within head, and memory tasks involved repetition digits and 2nd last digit in sequence, in forward task, and 2-back tasks, respectively.
Results: Participants with motion sickness (mild-moderate and severe groups) performed significantly poorer (p < 0.05) than those without on the VASI test, forward digit span, and 2-back. A moderate negative correlation was observed between MSSQ-short and VASI scores. Discriminant function analysis (DFA) revealed that participants with severe motion sickness could be categorized from the other two less severity groups (normal-minimal, mild-moderate), with VASI and forward digit span emerging as the most sensitive indicators of motion sickness induced changes in spatial and working memory.  
Conclusion: Findings underscores the importance of monitoring motion sickness, as it can impair spatial processing and working memory tasks in auditory domain.

1. Zajonc TP, Roland PS. Vertigo and Motion Sickness. Part I: Vestibular Anatomy and Physiology. Ear Nose Throat J. 2005; 84(9):581-4. [DOI:10.1177/014556130508400912]
2. Reason JT. Motion sickness adaptation: A neural mismatch model. J R Soc Med. 1978; 71(11):819-29. [DOI:10.1177/014107687807101109]
3. Seemungal BM. The components of vestibular cognition - motion versus spatial perception. Multisens Res. 2015; 28(5-6):507-24. [DOI:10.1163/22134808-00002507]
4. Bles W, Bos JE, De Graaf B, Groen E, Wertheim AH. Motion sickness: Only one provocative conflict? Brain Res Bull. 1998; 47(5):481-7. [DOI:10.1016/S0361-9230(98)00115-4]
5. Rine RM, Schubert MC, Balkany TJ. Visual-vestibular habituation and balance training for motion sickness. Phys Ther. 1999; 79(10):949-57. [DOI:10.1093/ptj/79.10.949]
6. Golding JF. Motion sickness susceptibility. Auton Neurosci. 2006; 129(1-2):67-76. [DOI:10.1016/j.autneu.2006.07.019]
7. Matsangas P, McCauley ME. Sopite syndrome: A revised definition. Aviat Space Environ Med. 2014; 85(6):672-3. [DOI:10.3357/ASEM.3891.2014]
8. Guidetti G, Guidetti R, Manfredi M, Manfredi M. Vestibular pathology and spatial working memory. Acta Otorhinolaryngol Ital. 2020; 40(1):72-8. [DOI:10.14639/0392-100X-2189]
9. Levine ME, Stern RM. Spatial task performance, sex differences, and motion sickness susceptibility. Percept Mot Skills. 2002; 95(20):425-31. [DOI:10.2466/pms.2002.95.2.425]
10. Schnabel L, Wuehr M, Huppert A, Bardins S, Brandt T, Huppert D. Age-dependent perturbation of the perceptual and postural vertical by visual roll vection and susceptibility to motion sickness in children. J Neurol. 2022; 269(11):5724-30. [DOI:10.1007/s00415-022-11017-x]
11. Stoffregen TA, Chang CH, Chen FC, Zeng WJ. Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLoS One. 2017; 12(11):e0187120. [DOI:10.1371/journal.pone.0187120]
12. de Thierry de Faletans C, Watelain E, Duché P. Motion sickness and visual impairment. Brain Res Bull. 2024; 217:111063. [DOI:10.1016/j.brainresbull.2024.111063]
13. Zuanazzi A, Noppeney U. Modality-specific and multisensory mechanisms of spatial attention and expectation. J Vis. 2020; 20(8):1. [DOI:10.1167/jov.20.8.1]
14. Golding JF. Predicting individual differences in motion sickness susceptibility by questionnaire. Pers Individ Dif. 2006; 41(2):237-48. [DOI:10.1016/j.paid.2006.01.012]
15. Kumar AU, Maruthy S. Development and Test Trail of Computer Based Auditory-Cognitive Training Module for Individuals with Cochlear Hearing Loss. Unpublished departmental project. Mysore: All India Institute of Speech and Hearing; 2013.
16. Faul F, Erdfelder E, Lang A, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39(2):175-91. [DOI:10.3758/BF03193146]
17. Bhattacharyya R, Upadhya SS, Jargar R, Nisha K. Exploring the consequences of the diurnal preference on auditory spatial and working memory tasks. Biol Rhythm Res. 2023; 54(9):548-62. [DOI:10.1080/09291016.2023.2232066]
18. Lamb S, Kwok KCS. MSSQ-short norms may underestimate highly susceptible individuals: Updating the MSSQ-short norms. Hum Factors. 2015; 57(4):622-33. [DOI:10.1177/0018720814555862]
19. Carhart R, Jerger J. Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord. 1959; 24(4):330-45. [DOI:10.1044/jshd.2404.330]
20. Nisha K V, Kumar AU. Virtual auditory space training-induced changes of auditory spatial processing in listeners with normal hearing. J Int Adv Otol. 2017; 13(1):118-27. [DOI:10.5152/iao.2017.3477]
21. Wenzel EM, Miller JD, Abel JS. Sound Lab: A real-time, software-based system for the study of spatial hearing. 108th AES Convention, Paris, France: The Audio Engineering Society; 2000. DOI ندارد
22. Gnanateja N. Consonant Confusion Matri. 2014. DOI ندارد
23. Nisha KV, Uppunda AK, Kumar RT. Spatial rehabilitation using virtual auditory space training paradigm in individuals with sensorineural hearing impairment. Front Neurosci. 2023 Jan 17;16:1080398. [DOI:10.3389/fnins.2022.1080398]
24. Soranzo A, Grassi M. PSYCHOACOUSTICS: A comprehensive MATLAB toolbox for auditory testing. Front Psychol. 2014; 5:712. [DOI:10.3389/fpsyg.2014.00712]
25. Levitt H. Transformed Up‐Down Methods in Psychoacoustics. J Acoust Soc Am. 1971; 49:467-77. [DOI:10.1121/1.1912375]
26. Conway AR, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW. Working memory span tasks: A methodological review and user's guide. Psychon Bull Rev. 2005; 12(5):769-86. [DOI:10.3758/BF03196772]
27. Ziarati M, Taziki MH, Hosseini SM. Autonomic laterality in caloric vestibular stimulation. World J Cardiol. 2020; 12(4):144-54. [DOI:10.4330/wjc.v12.i4.144]
28. Dahlman J, Sjörs A, Ledin T, Falkmer T. Could sound be used as a strategy for reducing symptoms of perceived motion sickness? J Neuroeng Rehabil. 2008; 5:35. [DOI:10.1186/1743-0003-5-35]
29. Tyng CM, Amin HU, Saad MNM, Malik AS. The influences of emotion on learning and memory. Front Psychol. 2017; 8:1454. [DOI:10.3389/fpsyg.2017.01454]
30. Alcantara-Thome M, Miguel-Puga JA, Jauregui-Renaud K. Anxiety and motion sickness susceptibility may influence the ability to update orientation in the horizontal plane of healthy subjects. Front Integr Neurosci. 2021; 15:742100. [DOI:10.3389/fnint.2021.742100]
31. Kim KY, Kim KH, Park YA, Seo YJ. Kawasaki disease and labyrinthitis: An underdiagnosed complication. J Audiol Otol. 2017; 21(1):53-6. [DOI:10.7874/jao.2017.21.1.53]
32. Akunna GG, Omobola SS, Lucyann CA, Saalu LC. Motion Sickness Medication Cinnarizine could Impair Hippocampal Morphology, Memory and Learning in Wistar Rat Models. J Clin Med Sci. 2023; 7(4):1-8. DOI: 10.35248/2593-9947.23.7.239
33. Daniel TA, Katz JS, Robinson JL. Delayed match-to-sample in working memory: A BrainMap meta-analysis. Biol Psychol. 2016; 120:10-20. [DOI:10.1016/j.biopsycho.2016.07.015]
34. Bhattacharyya R, Barman A, Antony F. Influence of BPPV and Meniere's Disease on Cognitive Abilities: A Questionnaire-Based Study. J Otol. 2024; 19(1):10-18. [DOI:10.1016/j.joto.2023.11.001]
35. Maerlender AC, Wallis DJ, Isquith PK. Psychometric and behavioral measures of central auditory function: The relationship between dichotic listening and digit span tasks. Child Neuropsychol. 2004; 10(4):318-27. [DOI:10.1080/09297040490909314]
Files
IssueArticles in Press QRcode
SectionResearch Article(s)
Keywords
Motion sickness Spatial perception Cognition Working memory Motion Sickness Susceptibility Questionnaire scores Vestibular

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Nisha K, Bhattacharyya R, Upadhya S, Jargar R. Motion sickness and its impact on auditory spatial perception and working memory. Aud Vestib Res. 2025;.