A Hyperspectral Imaging Tympanoscope as a Diagnostic Tool: System Development and a Pilot Study
Abstract
Background and Aim: Accurate diagnosis of Middle Ear Effusion (MEE) is a challenging task due to the lack of reliable diagnostic tools available to physicians and audiologists. This study aimed to develop a hyperspectral imaging tympanoscope for diagnosing MEE and evaluate its diagnostic ability.
Methods: The tympanoscope system was constructed using an ear endoscope, lens, camera, and near-infrared wavelengths. Its diagnostic ability was evaluated with a middle earmimicking phantom. Additionally, a pilot study was conducted on middle ear images from 10 children (five healthy and five with MEE).
Results: Phantom experiments revealed a Weber contrast difference of 0.16 and 0.49 between phantoms with and without fluid in visible otoscopy and hyperspectral tympanoscopy, respectively. As a result, in hyperspectral tympanoscopy, the contrast difference between fluid presence and absence was nearly tripled. Furthermore, in the pilot study, a significant difference was found in Weber contrast between healthy children and those with MEE (p<0.001), with higher contrast in the MEE group.
Conclusion: The hyperspectral imaging tympanoscope can quantitatively distinguish between the presence or absence of fluid in the middle ear. It has potential as a diagnostic and monitoring tool for MEE.
2. Qureishi A, Lee Y, Belfield K, Birchall JP, Daniel M. Update on otitis media - prevention and treatment. Infect Drug Resist. 2014;7:15-24. [DOI:10.2147/IDR.S39637]
3. Sundvall PD, Papachristodoulou CE, Nordeman L. Diagnostic methods for acute otitis media in 1 to 12 year old children: a cross sectional study in primary health care. BMC Fam Pract. 2019;20(1):127. [DOI:10.1186/s12875-019-1018-4]
4. Abbott P, Rosenkranz S, Hu W, Gunasekera H, Reath J. The effect and acceptability of tympanometry and pneumatic otoscopy in general practitioner diagnosis and management of childhood ear disease. BMC Fam Pract. 2014;15:181. [DOI:10.1186/s12875-014-0181-x]
5. Carr JA, Valdez TA, Bruns OT, Bawendi MG. Using the shortwave infrared to image middle ear pathologies. Proc Natl Acad Sci U S A. 2016;113(36):9989-94. [DOI:10.1073/pnas.1610529113]
6. Valdez TA, Pandey R, Spegazzini N, Longo K, Roehm C, Dasari RR, et al. Multiwavelength fluorescence otoscope for videorate chemical imaging of middle ear pathology. Anal Chem. 2014;86(20):10454-60. [DOI:10.1021/ac5030232]
7. Tran Van T, Lu Thi Thao M, Bui Mai Quynh L, Phan Ngoc Khuong C, Huynh Quang L. Application of Multispectral Imaging in the Human Tympanic Membrane. J Healthc Eng. 2020;2020:6219845. [DOI:10.1155/2020/6219845]
8. Cavalcanti TC, Kim S, Lee K, Lee SY, Park MK, Hwang JY. Smartphone-based spectral imaging otoscope: System development and preliminary study for evaluation of its potential as a mobile diagnostic tool. J Biophotonics. 2020;13(6):e2452. [DOI:10.1002/jbio.201960213]
9. Rajamanickam GP. A multispectral imaging method and device to detect and quantify the presence of fluid in the middle ear to facilitate the diagnosis and triage of ear infections. [Dissertation]. Cambridge, MA: Massachusetts Institute of Technology; 2020.
10. Rosenfeld RM. Diagnostic certainty for acute otitis media. Int J Pediatr Otorhinolaryngol. 2002;64(2):89-95. [DOI:10.1016/s0165-5876(02)00073-3]
11. Valdez TA, Carr JA, Kavanagh KR, Schwartz M, Blake D, Bruns O, et al. Initial findings of shortwave infrared otoscopy in a pediatric population. Int J Pediatr Otorhinolaryngol. 2018;114:15-9. [DOI:10.1016/j.ijporl.2018.08.024]
12. Valdez TA, Spegazzini N, Pandey R, Longo K, Grindle C, Peterson D, et al. Multi-color reflectance imaging of middle ear pathology in vivo. Anal Bioanal Chem. 2015;407(12):3277-83. [DOI:1s00216-015-8580-y]
13. Kapsokalyvas D, Bruscino N, Alfieri D, de Giorgi V, Cannarozzo G, Cicchi R, et al. Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope. Opt Express. 2013;21(4):4826-40. [DOI:10.1364/OE.21.004826]
14. Bae SJ, Lee DS, Berezin V, Kang U, Lee KH. Multispectral autofluorescence imaging for detection of cervical lesions: A preclinical study. J Obstet Gynaecol Res. 2016;42(12):1846-53. [DOI:10.1111/jog.13101]
15. Spigulis J, Oshina I, Berzina A, Bykov A. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. J Biomed Opt. 2017;22(9):91508. [DOI:10.1117/1.JBO.22.9.091508]
16. Rey-Barroso L, Burgos-Fernández FJ, Delpueyo X, Ares M, Royo S, Malvehy J, et al. Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis. Sensors (Basel). 2018;18(5):1441. [DOI:10.3390/s18051441]
17. Ortega S, Fabelo H, Iakovidis DK, Koulaouzidis A, Callico GM. Use of Hyperspectral/Multispectral Imaging in Gastroenterology. Shedding Some⁻Different⁻Light into the Dark. J Clin Med. 2019;8(1):36. [DOI:10.3390/jcm8010036]
18. Kashani RG, Młyńczak MC, Zarabanda D, Solis-Pazmino P, Huland DM, Ahmad IN, et al. Shortwave infrared otoscopy for diagnosis of middle ear effusions: a machine-learning-based approach. Sci Rep. 2021;11(1):12509. [DOI:10.1038/s41598-021-91736-9]
19. Schmilovitch Z, Alchanatis V, Shachar M, Holdstein Y. Spectrophotometric Otoscope: A New Tool in the Diagnosis of Otitis Media. J Near Infrared Spectrosc. 2007;15(4):209-15. [DOI:10.1255/jnirs.739]
| Files | ||
| Issue | Vol 35 No 1 (2026) | |
| Section | Research Article(s) | |
| DOI | https://doi.org/10.18502/avr.v35i1.20580 | |
| Keywords | ||
| Hyperspectral tympanoscope middle ear effusion middle ear-mimicking phantom | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |



