Effect of Contralateral Ear Occlusion on Transient Evoked Otoacoustic Emission and Distortion Product Otoacoustic Emission Amplitudes in Newborns in Noisy Environments
Abstract
Background and Aim: Background noise, especially in environments like neonatal intensive care units (NICUs), can compromise the accuracy of otoacoustic emission (OAE) testing by activating the medial olivocochlear (MOC) reflex, which suppresses OAE amplitudes. This study evaluated whether attenuating sound to the contralateral ear could improve OAE measurements in noisy environments.
Method: Thirty full-term newborns with no signs of hearing loss were enrolled. OAEs, including distortion product (DPOAE) and transient evoked (TEOAE), were recorded under three contralateral noise conditions: white noise at 50 and 60 dB SPL, and recorded NICU noise. The recordings were repeated after covering the contralateral ear with a soundproof headphone to attenuate incoming noise. OAE amplitudes were compared between uncovered and covered conditions using paired t-tests.
Results: After covering the contralateral ear, there was a slight overall enhancement of OAE amplitude across all noise conditions that showed statistical significance using a paired t-test. This improvement was more considerable in NICU noise than in white noise. OAE improvement in TEOAE was not as remarkable as in DPOAE.
Conclusion: This method resulted in a modest improvement in OAE levels, likely by reducing the activation of the MOC reflex. Enhancing OAE amplitudes by attenuating contralateral noise, particularly in high ambient noise environments, could improve the accuracy of OAE testing. This may lead to a reduction in false positive results, consequently lowering the costs associated with further diagnostic evaluations and alleviating parental anxiety.
2. Zamiri Abdollahi F, Lotfi Y. Gender Difference in TEOAEs and Contralateral Suppression of TEOAEs in Normal Hearing Adults. Iranian Rehabilitation Journal. 2011;9(2):22-5.
3. Mazaheryazdi M, Sharafi MA, Akbari M, Choobdar FA. Comparing Auditory Brain Stem Responses and Transient Otoacoustic Emissions in Premature Infants with Auditory Developmental Delay: Evidence of Temporary Auditory Neuropathy. Iran J Child Neurol. 2023;17(4):35-44. [DOI:10.22037/ijcn.v17i4.42882]
4. Mazaheryazdi M, Akbari M, Abolhasan Choobdar F. Auditory and speech development in a 3-year-old boy with auditory neuropathy spectrum disorder. Aud Vestib Res. 2021;30(2):139-47. [DOI:10.18502/avr.v30i2.6099]
5. Khosravi N, Mazaheryazdi M, Kalani M, Khalesi N, Shakeri Z, Archang S, et al. Physiological and electrophysiological evaluation of the hearing system in low birth weight neonates treated with cholestin: a cohort study. Egypt J Otolaryngol. 2023;39:75. [DOI:10.1186/s43163-023-00425-z]
6. Kanji A, Khoza-Shangase K, Moroe N. Newborn hearing screening protocols and their outcomes: A systematic review. Int J Pediatr Otorhinolaryngol. 2018;115:104-9. [DOI:10.1016/j.ijporl.2018.09.026]
7. Jacobson JT, Jacobson CA. The effects of noise in transient EOAE newborn hearing screening. Int J Pediatr Otorhinolaryngol. 1994;29(3):235-48. [DOI:10.1016/0165-5876(94)90170-8]
8. Sabbagh S, Amiri M, Khorramizadeh M, Iranpourmobarake Z, Nickbakht M. Neonatal Hearing Screening: Prevalence of Unilateral and Bilateral Hearing Loss and Associated Risk Factors. Cureus. 2021;13(6):e15947. [DOI:10.7759/cureus.15947]
9. Wallhagen MI, Strawbridge WJ, Shema SJ. The relationship between hearing impairment and cognitive function: a 5-year longitudinal study. Res Gerontol Nurs. 2008;1(2):80-6. [DOI:10.3928/19404921-20080401-08]
10. Dhar S, Hall III JW. Otoacoustic Emissions: Principles, Procedures, and Protocols. 2nd ed. San Diego: Plural Publishing, Inc; 2018.
11. Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol. 2018;9:197. [DOI:10.3389/fneur.2018.00197]
12. Haddadzade Niri H, Pourbakht A, Rahbar N, Haghani H. Brainstem Representation of Auditory Overshoot in Guinea Pigs Using Auditory Brainstem Responses. Iran J Child Neurol. 2021;15(2):41-56. [DOI:10.22037/ijcn.v15i2.26241]
13. Guinan JJ Jr. Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res. 2018;362:38-47. [DOI:10.1016/j.heares.2017.12.012]
14. Gkoritsa E, Korres S, Segas I, Xenelis I, Apostolopoulos N, Ferekidis E. Maturation of the auditory system: 2. Transient otoacoustic emission suppression as an index of the medial olivocochlear bundle maturation. Int J Audiol. 2007;46(6):277-86. [DOI:10.1080/14992020701261405]
15. Abdala C, Mishra S, Garinis A. Maturation of the human medial efferent reflex revisited. J Acoust Soc Am. 2013;133(2):938-50. [DOI:10.1121/1.4773265]
16. Durante AS, Carvallo RM. Contralateral suppression of linear and nonlinear transient evoked otoacoustic emissions in neonates at risk for hearing loss. J Commun Disord. 2008;41(1):70-83. [DOI:10.1016/j.jcomdis.2007.05.001]
17. Chabert R, Guitton MJ, Amram D, Uziel A, Pujol R, Lallemant JG, et al. Early maturation of evoked otoacoustic emissions and medial olivocochlear reflex in preterm neonates. Pediatr Res. 2006;59(2):305-8. [DOI:10.1203/01.pdr.0000196739.16060.0a]
18. Campos Ude P, Hatzopoulos S, Kochanek K, Sliwa L, Skarzynski H, Carvallo RM. Contralateral suppression of otoacoustic emissions: input-output functions in neonates. Med Sci Monit. 2011;17(10):CR557-62. [DOI:10.12659/msm.881981]
19. Aly HA, Ahmed AM. Effect of Noise on Neonatal Vital Data and Behavior in NICU. Clin Med Diagn. 2016;6(1):1-6. [DOI:10.5923/j.cmd.20160601.01]
20. Lotfi Y, Movallali G. A Universal Newborn Hearing Screening in Iran. Iranian Rehabilitation Journal. 2007;5(1):8-11.
21. Papsin E, Harrison AL, Carraro M, Harrison RV. Contralateral ear occlusion for improving the reliability of otoacoustic emission screening tests. Int J Otolaryngol. 2014;2014:248187. [DOI:10.1155/2014/248187]
22. Haddadzade Niri H, Rahbar N, Pourbakht A, Haghani H. Auditory Efferent System Influences the Auditory Overshoot Phenomenon- An Auditory Brainstem Response Study in Guinea Pigs. Basic Clin Neurosci. 2025;16(2).
23. Vishwakarma C, Mathur R, Sinha V, Vishwakarma R. Effects of background noise on transiently evoked otoacoustic emissions in newborn hearing screening. Indian J Otol. 2015;21(2):111-3. [DOI:10.4103/0971-7749.155296]
24. Kaveh M, Mirjalali SN, Shariat M, Zarkesh MR. Perinatal factors influencing the neonatal hearing screening results. BMC Pediatr. 2021;21(1):15. [DOI:10.1186/s12887-020-02476-0]
25. Morlet T, Hamburger A, Kuint J, Ari-Even Roth D, Gartner M, Muchnik C, et al. Assessment of medial olivocochlear system function in pre-term and full-term newborns using a rapid test of transient otoacoustic emissions. Clin Otolaryngol Allied Sci. 2004;29(2):183-90. [DOI:10.1111/j.0307-7772.2004.00786.x]
26. Abdala C, Keefe DH. Effects of middle-ear immaturity on distortion product otoacoustic emission suppression tuning in infant ears. J Acoust Soc Am. 2006;120(6):3832-42. [DOI:10.1121/1.2359237]
27. Prasher D, Ryan S, Luxon L. Contralateral suppression of transiently evoked otoacoustic emissions and neuro-otology. Br J Audiol. 1994;28(4-5):247-54. [DOI:10.3109/03005369409086574]Kellam B, Bhatia J. Sound spectral analysis in the intensive care nursery: measuring high-frequency sound. J Pediatr Nurs. 2008;23(4):317-23. [DOI:10.1016/j.pedn.2007.09.009]
Files | ||
Issue | Articles in Press | |
Section | Research Article(s) | |
Keywords | ||
auditory efferent system olivocochlear system newborns transient evoked otoacoustic emission distortion product otoacoustic emission |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |