Research Article

Abnormal slow EEG activity in Tinnitus patients

: Delta and alpha rhythms as an optimal QEEG index in open and close eyes

Abstract

Objective:  Recent studies try to clarify the difference of neuro-physiological responses of subject with tinnitus. The eye situation (open/close) is challengeable in electroencephalography researches. QEEG analysis are different on eyes close or open, so the recording of brain activities must be clarified by eyes condition. This study aimed to investigate this further in terms of differences in EEG activity between closed and open eyes condition in resting position of tinnitus patients.

Method: QEEG was analyzed in forty-six subjects with tinnitus (34 men and 12 women), in two eye conditions (open/close) for 3 minutes at resting position. Relative power of delta, theta, alpha, beta and gamma bands estimated by sLORETA software. Average of 30 electrodes across the scalp was measured for relative power at each rhythm separately and also, Paired T-test analysis for comparison of Delta/Alpha (DAR), Delta+Theta/Alpha+Beta (DTABR) between open/close eyes were done.

Results: In close eyes condition DAR and DTABR reduced significantly (p=0.009 and p=0.016) in comparison to open eyes. Relative power of delta increased in open eyes whereas surprisingly, alpha reduced significantly in compare to close eyes condition (p<0.001). There was not significant difference between two conditions at theta, beta and gamma rhythms.

Conclusion: Subjects with tinnitus indicate difference EEG activities at two eyes conditions. These changes, in Alpha band is completely revers in comparison to normal subjects that documents at previous researches. Increase of relative power of Alpha in close eyes and reduce of Delta power may be indicate sever tinnitus based on QEEG data. It seems that is better to select open eyes condition for QEEG analysis. Increase of DAR is a good variable in open eye condition and this study suggest the use of it as a potential biomarker for comparison of the severity of tinnitus.

1. Eggermont JJ. On the pathophysiology of tinnitus; a review and a peripheral model. Hear Res. 1990;48(1-2):111-23. [DOI:10.1016/0378-5955(90)90202-z]
2. Møller AR. Pathophysiology of tinnitus. Otolaryngol Clin North Am. 2003;36(2):249-66, v-vi. [DOI:10.1016/s0030-6665(02)00170-6]
3. Elgoyhen AB, Langguth B, De Ridder D, Vanneste S. Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci. 2015;16(10):632-42. [DOI:10.1038/nrn4003]
4. Langguth B, Kreuzer PM, Kleinjung T, De Ridder D. Tinnitus: causes and clinical management. Lancet Neurol. 2013;12(9):920-30. [DOI:10.1016/S1474-4422(13)70160-1]
5. Weisz N, Dohrmann K, Elbert T. The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res. 2007;166:61-70. [DOI:10.1016/S0079-6123(07)66006-3]
6. Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T. High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett. 2007;426(1):23-8. [DOI:10.1016/j.neulet.2007.08.034]
7. De Ridder D, Vanneste S, Langguth B, Llinas R. Thalamocortical Dysrhythmia: A Theoretical Update in Tinnitus. Front Neurol. 2015;6:124. [DOI:10.3389/fneur.2015.00124]
8. Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol. 2007;118(12):2765-73. [DOI:10.1016/j.clinph.2007.07.028]
9. Barry RJ, De Blasio FM. EEG differences between eyes-closed and eyes-open resting remain in healthy ageing. Biol Psychol. 2017;129:293-304. [DOI:10.1016/j.biopsycho.2017.09.010]
10. Hohaia W, Saurels BW, Johnston A, Yarrow K, Arnold DH. Occipital alpha-band brain waves when the eyes are closed are shaped by ongoing visual processes. Sci Rep. 2022;12(1):1194. [DOI:10.1038/s41598-022-05289-6]
11. Chang SD, Kuo PC, Zilles K, Duong TQ, Eickhoff SB, Huang ACW, et al. Brain Reactions to Opening and Closing the Eyes: Salivary Cortisol and Functional Connectivity. Brain Topogr. 2022;35(4):375-97. [DOI:10.1007/s10548-022-00897-x]
12. Zhang D, Gao Z, Liang B, Li J, Cai Y, Wang Z, et al. Eyes Closed Elevates Brain Intrinsic Activity of Sensory Dominance Networks: A Classifier Discrimination Analysis. Brain Connect. 2019;9(2):221-30. [DOI:10.1089/brain.2018.0644]
13. Alonso-Valerdi LM, Ibarra-Zarate DI, Tavira-Sánchez FJ, Ramírez-Mendoza RA, Recuero M. Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus. BMC Ear Nose Throat Disord. 2017;17:9. [DOI:10.1186/s12901-017-0042-z]
14. Geller AS, Burke JF, Sperling MR, Sharan AD, Litt B, Baltuch GH, et al. Eye closure causes widespread low-frequency power increase and focal gamma attenuation in the human electrocorticogram. Clin Neurophysiol. 2014;125(9):1764-73. [DOI:10.1016/j.clinph.2014.01.021]
15. Ronconi L, Busch NA, Melcher D. Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. Sci Rep. 2018;8(1):11810. [DOI:10.1038/s41598-018-29671-5]
16. Tarasi L, Romei V. Individual Alpha Frequency Contributes to the Precision of Human Visual Processing. J Cogn Neurosci. 2024;36(4):602-13. [DOI:10.1162/jocn_a_02026]
17. Güntensperger D, Kleinjung T, Neff P, Thüring C, Meyer M. Combining neurofeedback with source estimation: Evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restor Neurol Neurosci. 2020;38(4):283-99. [DOI:10.3233/RNN-200992]
18. Mahmoudian S, Shahmiri E, Rouzbahani M, Jafari Z, Keyhani M, Rahimi F, Mahmoudian G, Akbarvand L, Barzegar G, Farhadi M. Persian language version of the "Tinnitus Handicap Inventory": translation, standardization, validity and reliability. Int Tinnitus J. 2011;16(2):93-103.
19. Petro NM, Ott LR, Penhale SH, Rempe MP, Embury CM, Picci G, et al. Eyes-closed versus eyes-open differences in spontaneous neural dynamics during development. Neuroimage. 2022;258:119337. [DOI:10.1016/j.neuroimage.2022.119337]
20. Kan DPX, Croarkin PE, Phang CK, Lee PF. EEG Differences Between Eyes-Closed and Eyes-Open Conditions at the Resting Stage for Euthymic Participants. Neurophysiology. 2017;49:432-40. [DOI:10.1007/s11062-018-9706-6]
21. Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Multisite transcranial Random Noise Stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci. 2019;67:178-84. [DOI:10.1016/j.jocn.2019.06.033]
22. Isler JR, Pini N, Lucchini M, Shuffrey LC, Morales S, Bowers ME, Leach SC, Sania A, Wang L, Condon C, Nugent JD, Elliott AJ, Friedrich C, Andrew R, Fox NA, Myers MM, Fifer WP. Longitudinal characterization of EEG power spectra during eyes open and eyes closed conditions in children. Psychophysiology. 2023 Jan;60(1):e14158. [DOI:10.1111/psyp.14158]
23. Joos K, Vanneste S, De Ridder D. Disentangling depression and distress networks in the tinnitus brain. PLoS One. 2012;7(7):e40544. [DOI:10.1371/journal.pone.0040544]
24. Czornik M, Birbaumer N, Braun C, Hautzinger M, Wolpert S, Löwenheim H, et al. Neural substrates of tinnitus severity. Int J Psychophysiol. 2022;181:40-9. [DOI:10.1016/j.ijpsycho.2022.08.009]
25. Lan L, Li J, Chen Y, Chen W, Li W, Zhao F, et al. Alterations of brain activity and functional connectivity in transition from acute to chronic tinnitus. Hum Brain Mapp. 2021;42(2):485-94.
26. Spagna A, Hajhajate D, Liu J, Bartolomeo P. Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev. 2021;122:201-17. [DOI:10.1016/j.neubiorev.2020.12.029]
27. Sadeghijam M, Moossavi A, Akbari M. Does tinnitus lead to chaos? Braz J Otorhinolaryngol. 2021;87(2):125-6. [DOI:10.1016/j.bjorl.2020.11.022]
28. Jensen M, Alanis JCG, Hüttenrauch E, Winther-Jensen M, Chavanon ML, Andersson G, et al. Does it matter what is trained? A randomized controlled trial evaluating the specificity of alpha/delta ratio neurofeedback in reducing tinnitus symptoms. Brain Commun. 2023;5(4):fcad185. [DOI:10.1093/braincomms/fcad185]
29. Rosemann S, Rauschecker JP. Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus. Sci Rep. 2023;13(1):5746. [DOI:10.1038/s41598-023-32599-0]
Files
IssueArticles in Press QRcode
SectionResearch Article(s)
Keywords
Tinnitus quantitative electroencephalography delta to alpha ratio biomarker

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sobhany M, Lotfi Y, Talebian S, Bakhshi E, Javanbakht M. Abnormal slow EEG activity in Tinnitus patients. Aud Vestib Res. 2025;.