Abnormal Slow Electroencephalography Activity in Eyes-Open and Eyes-Closed Conditions as an Optimal Marker for Tinnitus
Abstract
Background and Aim: Recent studies try to clarify the difference of neuro-physiological responses of people with tinnitus. Quantitative Electroencephalography (QEEG) analysis is different in the eyes-closed or eyes-open conditions. This study aimed to compare the EEG activity of tinnitus patients between eyes-closed and eyes-open conditions at rest position.
Methods: Participants were 46 people with tinnitus (34 males and 12 females). Their QEEG was recorded in two eye conditions (close/open) for three minutes at resting position. Relative power of delta, theta, alpha, beta and gamma bands were estimated. Paired t-test was used for comparison of Delta/Alpha Ratio (DAR), and Delta+Theta/Alpha+Beta Ratio (DTABR) between the two eye conditions.
Results: The DAR and DTABR ratios were significantly higher in the eyes-open condition compared to the eyes-closed condition (p=0.009 and p=0.016, respectively). The delta power increased and alpha power decreased significantly in the eyes-open condition compared to the eyes-closed condition (p<0.001).
Conclusion: People with tinnitus have different EEG activities in eyes open/closed conditions. Increased delta power and decreased alpha power in the eyes-open condition may be an indicative of severe tinnitus. It seems better to record EEG activity with eyes open. Increased DAR is a good indicator in the eyes-open condition which is recommended to be used as a potential biomarker for comparing the severity of tinnitus.
2. Møller AR. Pathophysiology of tinnitus. Otolaryngol Clin North Am. 2003;36(2):249-66, v-vi. [DOI:10.1016/s0030-6665(02)00170-6]
3. Elgoyhen AB, Langguth B, De Ridder D, Vanneste S. Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci. 2015;16(10):632-42. [DOI:10.1038/nrn4003]
4. Langguth B, Kreuzer PM, Kleinjung T, De Ridder D. Tinnitus: causes and clinical management. Lancet Neurol. 2013;12(9):920-30. [DOI:10.1016/S1474-4422(13)70160-1]
5. Weisz N, Dohrmann K, Elbert T. The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res. 2007;166:61-70. [DOI:10.1016/S0079-6123(07)66006-3]
6. Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T. High frequency localised “hot spots” in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett. 2007;426(1):23-8. [DOI:10.1016/j.neulet.2007.08.034]
7. De Ridder D, Vanneste S, Langguth B, Llinas R. Thalamocortical Dysrhythmia: A Theoretical Update in Tinnitus. Front Neurol. 2015;6:124. [DOI:10.3389/fneur.2015.00124]
8. Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol. 2007;118(12):2765-73. [DOI:10.1016/j.clinph.2007.07.028]
9. Barry RJ, De Blasio FM. EEG differences between eyes-closed and eyes-open resting remain in healthy ageing. Biol Psychol. 2017;129:293-304. [DOI:10.1016/j.biopsycho.2017.09.010]
10. Hohaia W, Saurels BW, Johnston A, Yarrow K, Arnold DH. Occipital alpha-band brain waves when the eyes are closed are shaped by ongoing visual processes. Sci Rep. 2022;12(1):1194. [DOI:10.1038/s41598-022-05289-6]
11. Chang SD, Kuo PC, Zilles K, Duong TQ, Eickhoff SB, Huang ACW, et al. Brain Reactions to Opening and Closing the Eyes: Salivary Cortisol and Functional Connectivity. Brain Topogr. 2022;35(4):375-97. [DOI:10.1007/s10548-022-00897-x]
12. Zhang D, Gao Z, Liang B, Li J, Cai Y, Wang Z, et al. Eyes Closed Elevates Brain Intrinsic Activity of Sensory Dominance Networks: A Classifier Discrimination Analysis. Brain Connect. 2019;9(2):221-30. [DOI:10.1089/brain.2018.0644]
13. Alonso-Valerdi LM, Ibarra-Zarate DI, Tavira-Sánchez FJ, Ramírez-Mendoza RA, Recuero M. Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus. BMC Ear Nose Throat Disord. 2017;17:9. [DOI:10.1186/s12901-017-0042-z]
14. Geller AS, Burke JF, Sperling MR, Sharan AD, Litt B, Baltuch GH, et al. Eye closure causes widespread low-frequency power increase and focal gamma attenuation in the human electrocorticogram. Clin Neurophysiol. 2014;125(9):1764-73. [DOI:10.1016/j.clinph.2014.01.021]
15. Ronconi L, Busch NA, Melcher D. Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. Sci Rep. 2018;8(1):11810. [DOI:10.1038/s41598-018-29671-5]
16. Tarasi L, Romei V. Individual Alpha Frequency Contributes to the Precision of Human Visual Processing. J Cogn Neurosci. 2024;36(4):602-13. [DOI:10.1162/jocn_a_02026] 17. Güntensperger D, Kleinjung T, Neff P, Thüring C, Meyer M. Combining neurofeedback with source estimation: Evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restor Neurol Neurosci. 2020;38(4):283-99. [DOI:10.3233/RNN-200992]
18. Mahmoudian S, Shahmiri E, Rouzbahani M, Jafari Z, Keyhani M, Rahimi F, et al. Persian language version of the “Tinnitus Handicap Inventory”: translation, standardization, validity and reliability. Int Tinnitus J. 2011;16(2):93-103.
19. Petro NM, Ott LR, Penhale SH, Rempe MP, Embury CM, Picci G, et al. Eyes-closed versus eyes-open differences in spontaneous neural dynamics during development. Neuroimage. 2022;258:119337. [DOI:10.1016/j.neuroimage.2022.119337]
20. Kan DPX, Croarkin PE, Phang CK, Lee PF. EEG Differences Between Eyes-Closed and Eyes-Open Conditions at the Resting Stage for Euthymic Participants. Neurophysiology. 2017;49:432-40. [DOI:10.1007/s11062-018-9706-6]
21. Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Multisite transcranial Random Noise Stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci. 2019;67:178-84. [DOI:10.1016/j.jocn.2019.06.033]
22. Isler JR, Pini N, Lucchini M, Shuffrey LC, Morales S, Bowers ME, et al. Longitudinal characterization of EEG power spectra during eyes open and eyes closed conditions in children. Psychophysiology. 2023;60(1):e14158. [DOI:10.1111/psyp.14158]
23. Joos K, Vanneste S, De Ridder D. Disentangling depression and distress networks in the tinnitus brain. PLoS One. 2012;7(7):e40544. [DOI:10.1371/journal.pone.0040544]
24. Czornik M, Birbaumer N, Braun C, Hautzinger M, Wolpert S, Löwenheim H, et al. Neural substrates of tinnitus severity. Int J Psychophysiol. 2022;181:40-9. [DOI:10.1016/j.ijpsycho.2022.08.009]
25. Lan L, Li J, Chen Y, Chen W, Li W, Zhao F, et al. Alterations of brain activity and functional connectivity in transition from acute to chronic tinnitus. Hum Brain Mapp. 2021;42(2):485-94.
26. Spagna A, Hajhajate D, Liu J, Bartolomeo P. Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev. 2021;122:201-17. [DOI:10.1016/j.neubiorev.2020.12.029]
27. Sadeghijam M, Moossavi A, Akbari M. Does tinnitus lead to chaos? Braz J Otorhinolaryngol. 2021;87(2):125-6. [DOI:10.1016/j.bjorl.2020.11.022]
28. Jensen M, Alanis JCG, Hüttenrauch E, Winther-Jensen M, Chavanon ML, Andersson G, et al. Does it matter what is trained? A randomized controlled trial evaluating the specificity of alpha/delta ratio neurofeedback in reducing tinnitus symptoms. Brain Commun. 2023;5(4):fcad185. [DOI:10.1093/braincomms/fcad185]
29. Rosemann S, Rauschecker JP. Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus. Sci Rep. 2023;13(1):5746. [DOI:10.1038/s41598-023-32599-0]
| Files | ||
| Issue | Vol 34 No 4 (2025) | |
| Section | Research Article(s) | |
| DOI | https://doi.org/10.18502/avr.v34i4.19954 | |
| Keywords | ||
| Tinnitus quantitative electroencephalography delta to alpha ratio biomarker | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |



