Review Article

Enhanced Digital Acoustic Perception in Hearing Aid Device Using Reconfigurable Filter Bank Structure: A Systematic Review with Recommendation

Abstract

Background and Aim: Untreated hearing loss can severely impact quality of life, mental and physical health, and cognitive performance. Digital hearing aids can mitigate these effects, with the filter bank being a crucial component. It divides signals into frequency bands, compresses, amplifies, and processes speech based on the user's hearing profile. This study focuses on optimizing filter bank architecture in terms of hardware cost, processing speed, and adaptability to enhance the efficiency of digital hearing aids.
Recent Findings: Each filter bank in digital hearing aids relies on Finite Impulse Respons (FIR) filters, and optimizing their architecture is crucial for optimal device performance. Literature suggests that reconfigurable digital FIR filters are preferred for filter bank structures. However, their performance may vary based on specifications such as filter length, bandwidth, sampling frequency, and coefficients. Therefore, this review aims to identify an optimized reconfigurable FIR filter design that improves hearing aid performance while ensuring its parameters remain independent of these specifications.
Conclusion: A hardware-efficient, optimized, and adaptable parallel computing architecture for hearing aid filter banks has been identified from the literature survey. This proposed architecture features reconfigurable sub-band frequencies tailored to the user’s specific hearing loss, utilizing a Coefficient Scanning Mechanism (CSM) and Floating Point-Computation Sharing High-speed Mechanism (FP-CSHM). The CSM dynamically adjusts sub-band selection and reorganizes the FIR structure in each filter bank to reduce multiplication counts based on coefficient matching. The FP-CSHM enhances computation speed by eliminating redundant calculations through parallel processing.

1. Lovretić V, Pongrac K, Vuletić G, Benjak T. Role of social support in quality of life of people with hearing impairment. Journal of Applied Health Sciences. 2016;2(1):5-14. [DOI:10.24141/1/2/1/1]
2. Indrakanti R, Haridas N, Elias E. High performance continuous variable bandwidth digital filter design for hearing aid application. Int J Electron Commun. 2018;92:36-53. [DOI:10.1016/j.aeue.2018.05.006]
3. Devis T, Manuel M. Multirate and filterbank approaches in digital hearing aid design: A review. InIOP Conference Series: Materials Science and Engineering 2018 Aug 1 (Vol. 396, No. 1, p. 012036). IOP Publishing.
4. Tremblay N, Gonçalves P, Borgnat P. Design of Graph Filters and Filterbanks. In: Djuric P, Richard C, editors. Cooperative and Graph Signal Processing: Principles and Applications. 1st ed. Amsterdam, The Netherlands: Academic Press; 2018; p. 299-324.
5. Penedo SRM, Netto ML, Justo JF. Designing digital filter banks using wavelets. EURASIP J Adv Signal Process. 2019;33.
6. Anjali A, Shrivastav MTK. Reconfigurable filter bank design techniques for hearing aid performance improvement. Int J Recent Technol Eng (IJRTE). 2020;8(6):37-46. [DOI:10.35940/ijrte.F7127.038620]
7. Wei Y, Ma T, Ho BK, Lian Y. The Design of Low-Power 16-Ban Nonuniform Filter Bank for Hearing Aids. IEEE Trans Biomed Circuits Syst. 2019;13(1):112-23. [DOI:10.1109/TBCAS.2018.2888860]
8. Reddy NM, Suchetha M. Design of Area Efficient Filter Bank for Digital Hearing Aids. In Journal of Physics: Conference Series 2020 Dec 1 (Vol. 1716, No. 1, p. 012049). IOP Publishing.
9. Nema SK, Pathak MA. FIR filter bank design for Audiogram Matching. Int Res J Eng Technol (IRJET). 2016;3(12):409-14.
10. Li XL. Periodic Sequences Modulated Filter Banks. IEEE Signal Processing Letters. 2018;25(4):576-80. [DOI:10.1109/LSP.2018.2810833]
11. Huang S, Tian L, Ma X, Wei Y. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation. IEEE Trans Biomed Circuits Syst. 2016;10(2):487-96. [DOI:10.1109/TBCAS.2015.2436916]
12. Hareesh V, Bindiya TS. Design of Hardware Efficient Reconfigurable Merged Partial Cosine Modulated Non-uniform Filter Bank Channelizer and its Power Efficient Implementation Using a Novel Approximation Algorithm. Circuits Syst Signal Process. 2022;41:2118-35. [DOI:10.1007/s00034-021-01877-5]
13. Kalathil S, Elias E. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space. J Adv Res. 2015;6(6):839-49. [DOI:10.1016/j.jare.2014.06.008]
14. Devis T, Manuel M. A 17-Band Non-Uniform Interpolated FIR Filter Bank for Digital Hearing Aid. International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2018, pp. 0452-0456, DOI: 10.1109/ICCSP.2018.8524446. http://ojs.midem-drustvo.si/index.php/InfMIDEM/issue/view/78
15. Philip SP, Palaniswami S, Sivakumar H. A Computationally Efficient 11 Band non-Uniform Filter Bank for Hearing Aids Targeting Moderately Sloping Sensorineural Hearing Loss. Journal of Microelectronics, Electronic Components and Materials. 2020;50(3):153-68. [DOI:10.33180/InfMIDEM2020.301]
16. Shakya S, Ogale JV. Design and Analysis of Uniform-Band and Octave-Band Tree-Structured Filter Bank. Int J Sig Process. Syst. 2016;4(2):162-7.
17. Ma T, Wei Y, Lou X. Reconfigurable Nonuniform Filter Bank for Hearing Aid Systems. IEEE/ACM Trans Audio Speech Lang Process. 2021;30:758-71. [DOI:10.1109/TASLP.2021.3138713]
18. Raghavachari R, Sridharan M. Modeling and Simulation of Frequency Response Masking FIR Filter Bank using Approximate Multiplier for Hearing Aid Application. Adv Syst Sci Appl. 2018;18(4):74-91.
19. Ma T, Shen C, Wei Y. Adjustable filter bank design for hearing aids system. In 2019 IEEE international symposium on circuits and systems (ISCAS) 2019 May 26 (pp. 1-5). IEEE. [10.1109/ISCAS.2019.8702314]
20. Sokolova A, Sengupta D, Chen KL, Gupta R, Aksanli B, Harris F, et al. Multirate audiometric filter bank for hearing aid devices. In 2021 55th Asilomar Conference on Signals, Systems, and Computers 2021 Oct 31 (pp. 1436-1442). IEEE. [DOI:10.1109/IEEECONF53345.2021.9723257]
21. Deepu SP, Ramesh KM, Sumam DS. Design and implementation of a signal processing ASIC for digital hearing aids. Microprocess Microsyst. 2022;93:104616. [DOI:10.1016/j.micpro.2022.104616]
22. Deepu SP, Ramesh KM, Sumam DS. 18 band ANSI S1.11 filter bank based on interpolated finite impulse response technique for hearing aids. J Eng (Stevenage). 2020;(9):760-7. [DOI:10.1049/joe.2019.1009]
23. Yang CY, Liu CW, Jou SJ. A Systematic ANSI S1.11 Filter Bank Specification Relaxation and Its Efficient Multirate Architecture for Hearing-Aid Systems. IEEE/ACM Trans Audio Speech Lang Process. 2016;24(8):1380-92. [DOI:10.1109/TASLP.2016.2556422]
24. Subbulakshmi N, Manimegalai R. Pev Based Filter Bank For Digital Hearing Aid Application: PEVFB. J Mech Continua Math Sci. 2020;15(1):147-59. [DOI:10.26782/jmcms.2020.01.00011]
25. Haridas N, Elias E. Design of reconfigurable low-complexity digital hearing aid using Farrow structure based variable bandwidth filters. J Appl Res Technol. 2016;14(2):154-65. [DOI:10.1016/j.jart.2016.03.005]
26. Rawandale US, Kolte MT. Design, Development and Analysis of Variable Bandwidth Filter Bank for Enhancing the Performance of Hearing Aid System. Int J Intell Eng Syst. 2021;14(6):391-401. [DOI:10.22266/ijies2021.1231.35]
27. Sebastian A, Francis M, Mathew A. Non-uniform FIR Digital Filter Bank for Hearing Aid Application Using Frequency Response Masking Technique: A Review. arXiv preprint arXiv. 2012.10663, 2020. [DOI:10.48550/arXiv.2012.10663]
28. Raj S, Shaji A. Design of Reconfigurable Digital Filter Bank for Hearing Aid. Int J Sci Res. 2016;5(7):450-4.
29. Haridas N, Elias E. Efficient variable bandwidth filters for digital hearing aid using Farrow structure. J Adv Res. 2016;7(2):255-62. [DOI:10.1016/j.jare.2015.06.002]
30. Subbulakshmi N, Manimegalai R, Rajakumar G, Ananth Kumar T, Kosuri U. A novel design of low-cost hearing aid devices using an efficient lifting filter bank with a modified variable filter. Expert Rev Med Devices. 2022;19(12):991-9. [DOI:10.1080/17434440.2022.2159376]
31. Roy S, Chandra A. A new design strategy of sharp cut-off fir filter with powers-of-two coefficients. In2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) 2018 Mar 22 (pp. 1-6). IEEE. [DOI:10.1109/WiSPNET.2018.8538605]
32. Ramya R, Moorthi S. Audiogram matching in hearing aid using approximate arithmetic. Multidim Syst Sign Process. 2021;32:1199-215. [DOI:10.1007/s11045-021-00782-z]
33. Roy S, Chandra A. Design of narrow transition band variable bandwidth digital filter. IET Circuits Devices Syst. 2020;14(6):750-7. [DOI:10.1049/iet-cds.2019.0483]
34. Chandra A, Chattopadhyay S. Design of hardware efficient FIR filter: A review of the state-of-the-art approaches. Eng Sci Technol Int J. 2016;19(1):212-26. [DOI:10.1016/j.jestch.2015.06.006]
35. Amir A, Bindiya TS, Elias E. Low-complexity implementation of efficient reconfigurable structure for cost-effective hearing aids using fractional interpolation. Comput Electr Eng. 2019;74:391-412. [DOI:10.1016/j.compeleceng.2019.02.008]
36. Ma T, Wei Y, Ma X. Reconfigurable fast filter bank based on node-modulation. In 2017 22nd International Conference on Digital Signal Processing (DSP) 2017 Aug 23 (pp. 1-5). IEEE. [DOI:10.1109/ICDSP.2017.8096151]
37. Sonawane MS, Chougule SR. Signal Processing Techniques Used in Digital Hearing-Aid Devices: A Review. IUP Journal of Electrical & Electronics Engineering. 2020;13(1):51.
38. Ma T, Shen C, Wei Y. Adjustable filter bank design for hearing aids system. In 2019 IEEE international symposium on circuits and systems (ISCAS) 2019 May 26 (pp. 1-5). IEEE. [DOI:10.1109/ISCAS.2019.8702314]
39. Dhabu S, Ambede A, Agrawal N, Smitha KG, Darak S, Vinod AP. Variable cutoff frequency FIR filters: a survey. SN Appl Sci. 2020;2:343. [DOI:10.1007/s42452-020-2140-6]
40. Venkata Krishna Odugu VK, Narasimhulu CV, Prasad KS. A novel filter-bank architecture of 2D-FIR symmetry filters using LUT based multipliers. Integr. 2022;84:12-25. [DOI:10.1016/j.vlsi.2022.01.004]
41. Sudharman S, Rajan AD, Bindiya TS. Design of a Power-Efficient Low-Complexity Reconfigurable Non-maximally Decimated Filter Bank for High-Resolution Wideband Channels. Circuits Syst Signal Process. 2019;38:2703-35. [DOI:10.1007/s00034-018-0988-0]
42. Roy S, Chandra A. Design of Narrow Transition Band Digital Filter: An Analytical Approach. Integration. 2019;68:38-49. [DOI:10.1016/j.vlsi.2019.06.002]
43. Umadevi S, Vigneswaran T, Kadam Vinay S, Seerengasamy V. A Novel Less Area Computation Sharing High Speed Multiplier Architecture for FIR Filter Design. Research Journal of Applied Sciences, Engineering and Technology. 2015;10(7):816-23.
Files
IssueArticles in Press QRcode
SectionReview Article(s)
Keywords
Hearing aid hearing loss audiogram hearing threshold

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Karuppaiah R, Seerengasamy U, Boobalakrishnan N. Enhanced Digital Acoustic Perception in Hearing Aid Device Using Reconfigurable Filter Bank Structure: A Systematic Review with Recommendation. Aud Vestib Res. 2024;.