Research Article

The Effect of Root-Mean-Square and Loudness-Based Calibration Approach on the Acceptable Noise Level

Abstract

Background and Aim: Hearing and speech perception are essential in social life. As our environment contains many background noises in everyday conversations, it is necessary to evaluate the noise tolerance. The Acceptable Noise Level (ANL) provides an approach to quantifying the maximum amount of background noise a listener is willing to put up with while listening to a target story without becoming tense. Exploring noise tolerance in speech perception, the study investigates how different calibration methods impact normal hearing participants’ monotic and dichotic ANL results.
Methods: This investigation utilizes a pared-sample t-test for statistical analysis, adopting a comparative observational approach. This study applied the Persian version of the typical ANL test. Two approaches have equalized the target and background stimuli: Root Mean Squared (RMS) and loudness match calibration via Adobe Audition. Using these modified materials the Most Comfortable Level (MCL), the Background Noise Level (BNL), and ANL were compared in terms of RMS and loudness match calibration. Fifty normal persons aged (18–39), under the conditions of monotic and dichotic listening, participated in this study.
Results: The statistical analysis using a paired-sample t-test revealed no significant differences in the outcomes of the ANL test between the calibrations of RMS and loudness matching under both monotic and dichotic listening conditions (p=0.31 and p=0.67, respectively).
Conclusion: The study suggests that calibration procedures, namely RMS and Loudness matching, do not affect ANL in either monotic or dichotic conditions.

1. McArdle R, Hnath-Chisolm T. Speech audiometry. In: Katz J, Medwetsky L, Burkard R, Hood L, editors. Handbook of clinical audiology. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2009. p. 64-79.
2. Irwin A, Hall DA, Peters A, Plack CJ. Listening to urban soundscapes: Physiological validity of perceptual dimensions. Psychophysiology. 2011;48(2):258-68. [DOI:10.1111/j.1469-8986.2010.01051.x]
3. Laszlo HE, McRobie ES, Stansfeld SA, Hansell AL. Annoyance and other reaction measures to changes in noise exposure – a review. Sci Total Environ. 2012;435-436:551-62. [DOI:10.1016/j.scitotenv.2012.06.112]
4. Nureddini SZ, Mohammadzadeh A, Tabatabai SM. Comparsion the recognition score of stop and fricative consonants in babble noise. J Rehab Med. 2015;4(1): 134-41. Persian. [DOI:10.22037/JRM.2015.1100163]
5. Nabelek AK, Tucker FM, Letowski TR. Toleration of background noises: relationship with patterns of hearing aid use by elderly persons. J Speech Hear Res. 1991;34(3):679-85. [DOI:10.1044/jshr.3403.679]
6. Harkrider AW, Tampas JW. Differences in responses from the cochleae and central nervous systems of females with low versus high acceptable noise levels. J Am Acad Audiol. 2006;17(9):667-76. [DOI:10.3766/jaaa.17.9.6]
7. Recker KL, Edwards BW. The effect of presentation level on normal-hearing and hearing-impaired listeners’ acceptable speech and noise levels. J Am Acad Audiol. 2013;24(1):17-25. [DOI:10.3766/jaaa.24.1.3]
8. Plyler PN, Alworth LN, Rossini TP, Mapes KE. Effects of speech signal content and speaker gender on acceptance of noise in listeners with normal hearing. Int J Audiol. 2011;50(4):243-8. [DOI:10.3109/14992027.2010.545082]
9. Rogers DS, Harkrider AW, Burchfield SB, Nabelek AK. The influence of listener’s gender on the acceptance of background noise. J Am Acad Audiol. 2003;14(7):372-82; quiz 401. [DOI:10.1055/s-0040-1715756]
10. Crowley HJ, Nabelek IV. Estimation of client-assessed hearing aid performance based upon unaided variables. J Speech Hear Res. 1996;39(1):19-27. [DOI:10.1044/jshr.3901.19]
11. Ghaheri FS, Jalilvand H, Ashayeri H, Nekoutabar R, Makkiabadi B. Music Valence Can Affect Dichotic Listening Performance. Aud Vestib Res. 2023;32(1):1-8. [DOI:10.18502/avr.v32i1.11311]
12. Nekoutabar R, Jalilvand H, Ashayeri H, Mahdavi ME, Tabatabaee SM. Effect of Pleasantness and Unpleasantness of Music on the Acceptable Noise Level. Aud Vestib Res. 2023;32(3):204-12. [DOI:10.18502/avr.v32i3.12936]
13. Franklin CA, White LJ, Franklin TC. Relationship between loudness tolerance and the acceptance of background noise for young adults with normal hearing. Percept Mot Skills. 2012;114(3):717-22. [DOI:10.2466/24.22.PMS.114.3.717-722]
14. Skagerstrand Å, Köbler S, Stenfelt S. Loudness and annoyance of disturbing sounds - perception by normal hearing subjects. Int J Audiol. 2017;56(10):775-83. [DOI:10.1080/14992027.2017.1321790]
15. Maryn Y, Zarowski A. Calibration of Clinical Audio Recording and Analysis Systems for Sound Intensity Measurement. Am J Speech Lang Pathol. 2015;24(4):608-18. [DOI:10.1044/2015_AJSLP-14-0082]
16. Koch X, Dingemanse G, Goedegebure A, Janse E. Type of Speech Material Affects Acceptable Noise Level Test Outcome. Front Psychol. 2016;7:186. [DOI:10.3389/fpsyg.2016.00186]
17. Recker KL, Micheyl C. Speech Intelligibility as a Cue for Acceptable Noise Levels. Ear Hear. 2017;38(4):465-74. [DOI:10.1097/AUD.0000000000000408]
18. Harkrider AW, Smith SB. Acceptable noise level, phoneme recognition in noise, and measures of auditory efferent activity. J Am Acad Audiol. 2005;16(8):530-45. [DOI:10.3766/jaaa.16.8.2]
19. Simpson SA, Cooke M. Consonant identification in N-talker babble is a nonmonotonic function of N. J Acoust Soc Am. 2005;118(5):2775-8. [DOI:10.1121/1.2062650]
20. Shin JB, Lee JH. Effects of the target talker gender and the number of competing talkers on acceptable noise level (ANL) of Korean normal-hearing adults. Audiology. 2010;6(2):146-52.
21. Ahmadi A, Fatahi J, Keshani A, Jalilvand H, Modarresi Y, Jalaie S. [Developing and evaluating the reliability of acceptable noise level test in Persian language]. J Rehab Med. 2015;4(2):109-17. Persian. [DOI:10.22037/JRM.2015.1100032]
22. Lawson GD, Peterson ME. Speech Audiometry. San Diego: Plural Publishing, Inc.; 2011.
23. Iso TR. 4870. Acoustics–the construction and calibration of speech intelligibility tests. International Organization for Standardization, Technical, Report. 1991;17.
24. Larsby B, Hällgren M, Lyxell B, Arlinger S. Cognitive performance and perceived effort in speech processing tasks: effects of different noise backgrounds in normal-hearing and hearing-impaired subjects. Int J Audiol. 2005;44(3):131-43. [DOI:10.1080/14992020500057244]
25. Yost W. Fundamentals of Hearing: An Introduction. San Diego, CA: Academic Press; 1994.
26. Franklin CA Jr, Thelin JW, Nabelek AK, Burchfield SB. The effect of speech presentation level on acceptance of background noise in listeners with normal hearing. J Am Acad Audiol. 2006;17(2):141-6. [DOI:10.3766/jaaa.17.2.6]
27. Recker KL, McKinney MF, Edwards BW. Loudness as a cue for acceptable noise levels. J Am Acad Audiol. 2014;25(6):605-23. [DOI:10.3766/jaaa.25.6.10]
28. Muzet A. Environmental noise, sleep and health. Sleep Med Rev. 2007;11(2):135-42. [DOI:10.1016/j.smrv.2006.09.001]
29. Pollack I. The Effect of White Noise on the Loudness of Speech of Assigned Average Level. J Acoust Soc Am. 1949;21(3):255-8. [DOI:10.1121/1.1906504]
30. Moore BCJ, Glasberg BR, Baer T. A Model for the Prediction of Thresholds, Loudness, and Partial Loudness. J Audio Eng Soc. 1997;45(4):224-40.
31. Allen JB. How do humans process and recognize speech? IEEE Transactions on Speech and Audio Processing. 1994;2(4):567-77. [DOI:10.1109/89.326615]
32. Loizou PC. Speech Enhancement: Theory and Practice. 1st ed. Boca Raton: Taylor & Francis; 2007.
33. Kjems U, Boldt JB, Pedersen MS, Lunner T, Wang D. Role of mask pattern in intelligibility of ideal binary-masked noisy speech. J Acoust Soc Am. 2009;126(3):1415-26. [DOI:10.1121/1.3179673]
Files
IssueVol 33 No 4 (2024) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v33i4.16654
Keywords
Loudness calibration acceptable noise level root mean square

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Nekoutabar R, Ghaheri FS, Jalilvand H. The Effect of Root-Mean-Square and Loudness-Based Calibration Approach on the Acceptable Noise Level. Aud Vestib Res. 2024;33(4):361-370.