Review Article

Cortical Areas Involved in Subjective Visual Vertical Perception: A Systematic Review

Abstract

Background and Aim: The information related to brain oscillation, head rotation and head orientation relative to gravity is obtained from the vestibular system. An important reference for upright posture and navigation is gravity-based vertical perception. Many studies have been conducted for the determination of cortical areas involved in Subjective Visual Vertical (SVV) perception in healthy people or patients with brain injuries. Their results have indicated an extensive and bilateral cortical area involved in SVV perception. The purpose of this review study is to investigate these cortical areas and their functional role.
Recent Findings: Neuroimaging studies in patients with brain injuries showed that multiple cortical areas have a role in SVV perception. These areas mainly include the occipital cortex, frontal cortex, posterior temporoparietal, temporo-occipital, parieto-occipital, superior temporal gyrus, inferior parietal lobe in temporoparietal junction, posterior insula, cuneus, lingual gyrus, precuneus, ventral dentate nucleus, cerebellum, and brainstem.
Conclusion: The cortical areas involved in SVV perception are a part of the vestibular system, which is distributed bilaterally. These areas have a multi-sensory processing task and play a role in processing of cognitive and motor sensory information.

1. Raiser TM, Flanagin VL, Duering M, van Ombergen A, Ruehl RM, Zu Eulenburg P. The human corticocortical vestibular network. Neuroimage. 2020;223:117362. [DOI:10.1016/j.neuroimage.2020.117362]
2. Saj A, Borel L, Honoré J. Functional Neuroanatomy of Vertical Visual Perception in Humans. Front Neurol. 2019;10:142. [DOI:10.3389/fneur.2019.00142]
3. Kheradmand A, Winnick A. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex. Front Neurol. 2017;8:552. [DOI:10.3389/fneur.2017.00552]
4. Lopez C, Mercier MR, Halje P, Blanke O. Spatiotemporal dynamics of visual vertical judgments: early and late brain mechanisms as revealed by high-density electrical neuroimaging. Neuroscience. 2011;181:134-49. [DOI:10.1016/j.neuroscience.2011.02.009]
5. Rousseaux M, Braem B, Honoré J, Saj A. An anatomical and psychophysical comparison of subjective verticals in patients with right brain damage. Cortex. 2015;69:60-7. [DOI:10.1016/j.cortex.2015.04.004]
6. Baier B, Suchan J, Karnath HO, Dieterich M. Neural correlates of disturbed perception of verticality. Neurology. 2012;78(10):728-35. [DOI:10.1212/WNL.0b013e318248e544]
7. Yelnik AP, Lebreton FO, Bonan IV, Colle FM, Meurin FA, Guichard JP, et al. Perception of verticality after recent cerebral hemispheric stroke. Stroke. 2002;33(9):2247-53. [DOI:10.1161/01.str.0000027212.26686.48]
8. Jafari M, Shaabani M, Hosseini SR, Ashayeri H, Bakhshi E, Haghgoo HA. Modification of cortical electrical activity in stroke survivors with abnormal subjective visual vertical: An eLORETA study. Heliyon. 2023;9(11):e22194. [DOI:10.1016/j.heliyon.2023.e22194]
9. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010;8(5):336-41. [DOI:10.1016/j.ijsu.2010.02.007]
10. Rousseaux M, Honoré J, Vuilleumier P, Saj A. Neuroanatomy of space, body, and posture perception in patients with right hemisphere stroke. Neurology. 2013;81(15):1291-7. [DOI:10.1212/WNL.0b013e3182a823a7]
11. Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, et al. Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct. 2016;221(3):1291-308. [DOI:10.1007/s00429-014-0971-x]
12. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241-54. [DOI:10.1016/j.tics.2013.03.003]
13. Brandt T, Dieterich M. Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol. 1994;36(3):337-47. [DOI:10.1002/ana.410360304]
14. Maffei V, Mazzarella E, Piras F, Spalletta G, Caltagirone C, Lacquaniti F, et al. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients. Cortex. 2016;78:55-69. [DOI:10.1016/j.cortex.2016.02.004]
15. Choi JH, Seo JD, Choi YR, Kim MJ, Kim HJ, Kim JS, et al. Inferior cerebellar peduncular lesion causes a distinct vestibular syndrome. Eur J Neurol. 2015;22(7):1062-7. [DOI:10.1111/ene.12705]
16. Saj A, Cojan Y, Musel B, Honoré J, Borel L, Vuilleumier P. Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol Clin. 2014;44(1):33-40. [DOI:10.1016/j.neucli.2013.10.135]
17. Karim HT, Sparto PJ, Aizenstein HJ, Furman JM, Huppert TJ, Erickson KI, et al. Functional MR imaging of a simulated balance task. Brain Res. 2014;1555:20-7. [DOI:10.1016/j.brainres.2014.01.033]
18. Barra J, Laou L, Poline JB, Lebihan D, Berthoz A. Does an oblique/slanted perspective during virtual navigation engage both egocentric and allocentric brain strategies? PLoS One. 2012;7(11):e49537. [DOI:10.1371/journal.pone.0049537]
19. Vandenberghe R, Dupont P, De Bruyn B, Bormans G, Michiels J, Mortelmans L, et al. The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention. Brain. 1996;119 ( Pt 4):1263-76. [DOI:10.1093/brain/119.4.1263]
20. McNerney KM, Lockwood AH, Coad ML, Wack DS, Burkard RF. Use of 64-channel electroencephalography to study neural otolith-evoked responses. J Am Acad Audiol. 2011;22(3):143-55. [DOI:10.3766/jaaa.22.3.3]
21. Todd NP, McLean A, Paillard A, Kluk K, Colebatch JG. Vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration applied at the nasion. Exp Brain Res. 2014;232(12):3771-84. [DOI:10.1007/s00221-014-4067-x]
22. Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A. Functional MRI of galvanic vestibular stimulation. J Neurophysiol. 1998;80(5):2699-709. [DOI:10.1152/jn.1998.80.5.2699]
23. Herold F, Orlowski K, Börmel S, Müller NG. Cortical activation during balancing on a balance board. Hum Mov Sci. 2017;51:51-8. [DOI:10.1016/j.humov.2016.11.002]
24. Santos-Pontelli TE, Pontes-Neto OM, Araujo DB, Santos AC, Leite JP. Neuroimaging in stroke and non-stroke pusher patients. Arq Neuropsiquiatr. 2011;69(6):914-9. [DOI:10.1590/s0004-282x2011000700013]
25. Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. Cortical modulation of nociception by galvanic vestibular stimulation: A potential clinical tool? Brain Stimul. 2020;13(1):60-8. [DOI:10.1016/j.brs.2019.10.009]
26. Kirsch V, Boegle R, Keeser D, Kierig E, Ertl-Wagner B, Brandt T, et al. Beyond binary parcellation of the vestibular cortex - A dataset. Data Brief. 2019;23:103666. [DOI:10.1016/j.dib.2019.01.014]
27. Hülsdünker T, Mierau A, Neeb C, Kleinöder H, Strüder HK. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci Lett. 2015;592:1-5. [DOI:10.1016/j.neulet.2015.02.049]
28. Adkin AL, Quant S, Maki BE, McIlroy WE. Cortical responses associated with predictable and unpredictable compensatory balance reactions. Exp Brain Res. 2006;172(1):85-93. [DOI:10.1007/s00221-005-0310-9]
29. Anguera JA, Seidler RD, Gehring WJ. Changes in performance monitoring during sensorimotor adaptation. J Neurophysiol. 2009;102(3):1868-79. [DOI:10.1152/jn.00063.2009]
30. Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage. 2011;54(2):1289-96. [DOI:10.1016/j.neuroimage.2010.08.066]
31. Slobounov S, Wu T, Hallett M. Neural basis subserving the detection of postural instability: an fMRI study. Motor Control. 2006;10(1):69-89. [DOI:10.1123/mcj.10.1.69]
32. Engel AK, Fries P. Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156-65. [DOI:10.1016/j.conb.2010.02.015]
33. Ertl M, Moser M, Boegle R, Conrad J, Zu Eulenburg P, Dieterich M. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations. Neuroimage. 2017;155:50-9. [DOI:10.1016/j.neuroimage.2017.02.044]
34. Pfurtscheller G, Stancák A Jr, Neuper C. Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol. 1996;98(4):281-93. [DOI:10.1016/0013-4694(95)00258-8]
35. Ebata S, Sugiuchi Y, Izawa Y, Shinomiya K, Shinoda Y. Vestibular projection to the periarcuate cortex in the monkey. Neurosci Res. 2004;49(1):55-68. [DOI:10.1016/j.neures.2004.01.012]
36. Fukushima J, Akao T, Takeichi N, Kurkin S, Kaneko CR, Fukushima K. Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation. J Neurophysiol. 2004;91(6):2809-25. [DOI:10.1152/jn.01128.2003]
37. Lopez C, Blanke O, Mast FW. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience. 2012;212:159-79. [DOI:10.1016/j.neuroscience.2012.03.028]
38. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(Pt 3):564-83. [DOI:10.1093/brain/awl004]
39. Kovács G, Raabe M, Greenlee MW. Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex. 2008;18(8):1779-87. [DOI:10.1093/cercor/bhm203]
40. Jahn K, Deutschländer A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22(4):1722-31. [DOI:10.1016/j.neuroimage.2004.05.017]
Files
IssueArticles in Press QRcode
SectionReview Article(s)
Keywords
Subjective visual verticality vertical perception cortex vestibular network

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Jafari M, Haghgoo HA, Hosseini SR, Ashayeri H, Bakhshi E, Shaabani M. Cortical Areas Involved in Subjective Visual Vertical Perception: A Systematic Review. Aud Vestib Res. 2024;.