Research Article

Investigating the Feasibility of Gap Prepulse Inhibition by Auditory Middle Latency Responses in Healthy Subjects

Abstract

Background and Aim: Gap Prepulse Inhibition (GPI) is a type of Prepulse Inhibition (PPI) in which a gap is used as a prepulse. This study was conducted to investigate the silence gap effect on Auditory Middle Latency Response (AMLR) inhibition in normal subjects.
Methods: In this study, 25 participants with normal hearing and no history of tinnitus were included. AMLR was recorded in response to stimuli with gap and without gap in two background noises of 2 and 8 kHz at two electrode locations Fz and Cz and then, gap prepulse inhibition for Na-Pa, Pa-Nb, Nb-Pb and Pb-Nc amplitude with Use of responses to stimuli with and without gap was calculated.
Results: The results showed that the mean amplitudes of all four AMLR indices decreased in response to the stimuli with gap and this decrease was more and statistically significant in 8 kHz background noise (p≤0.001).
Conclusion: According to the results of this study, it seems that in future studies, PPI of Na-Pa and Pb-Nc amplitudes can be used as main indicators and PPI of Pa-Nb and Nb-Pb amplitudes as alternative indicators in the PPI paradigm in tinnitus diagnosis.

1. Swerdlow NR, Braff DL, Geyer MA. Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol. 2000;11(3-4):185-204. [DOI:10.1097/00008877-200006000-00002]
2. Reijmers LG, Peeters BW. Effects of acoustic prepulses on the startle reflex in rats: a parametric analysis. Brain Research. 1994;661(1-2):274-82. [DOI:10.1016/0006-8993(94)91204-1]
3. Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, et al. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci. 2006;120(1):188-95. [DOI:10.1037/0735-7044.120.1.188]
4. Fournier P, Hébert S. Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res. 2013;295:16-23. [DOI:10.1016/j.heares.2012.05.011]
5. Ku Y, Ahn JW, Kwon C, Suh M-W, Lee JH, Oh SH, et al. A programmable acoustic stimuli and auditory evoked potential measurement system for objective tinnitus diagnosis research. In: Ku Y, Ahn JW, Kwon C, Suh M-W, Lee JH, Oh SH, et al, editors. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014 26-30 Aug, Chicago, IL, USA: IEEE; 2014. p. 2749-52.
6. Wilson CA, Berger JI, de Boer J, Sereda M, Palmer AR, Hall DA, et al. Gap-induced inhibition of the post-auricular muscle response in humans and guinea pigs. Hear Res. 2019;374:13-23. [DOI:10.1016/j.heares.2019.01.009]
7. Jafari Z, Kolb BE, Mohajerani MH. Prepulse inhibition of the acoustic startle reflex and P50 gating in aging and alzheimer’s disease. Ageing Res Rev. 2020;59:101028. [DOI:10.1016/j.arr.2020.101028]
8. Duda V, Scully O, Baillargeon MS, Hébert S. Does Tinnitus Fill in the Gap Using Electrophysiology? A Scoping Review. Otolaryngol Clin North Am. 2020;53(4):563-82. [DOI:10.1016/j.otc.2020.03.006]
9. Ku Y, Ahn JW, Kwon C, Kim DY, Suh MW, Park MK, et al. The gap-prepulse inhibition deficit of the cortical N1-P2 complex in patients with tinnitus: The effect of gap duration. Hear Res. 2017;348:120-8. [DOI:10.1016/j.heares.2017.03.003]
10. Berger JI, Coomber B, Wallace MN, Palmer AR. Reductions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. Eur J Neurosci. 2017;45(3):398-409. [DOI:10.1111/ejn.13474]
11. Lee JH, Jung JY, Park I. A Gap Prepulse with a Principal Stimulus Yields a Combined Auditory Late Response. J Audiol Otol. 2020;24(3):149-156. [DOI:10.7874/jao.2019.00374]
12. Berger JI, Owen W, Wilson CA, Hockley A, Coomber B, Palmer AR, et al. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals. Brain Res. 2018;1679:101-8. [DOI:10.1016/j.brainres.2017.11.026]
13. Xin Z, Gu S, Wang W, Lei Y, Li H. Acute Stress and Gender Effects in Sensory Gating of the Auditory Evoked Potential in Healthy Subjects. Neural Plast. 2021;2021:8529613. [DOI:10.1155/2021/8529613]
14. Campolo J, Lobarinas E, Salvi R. Does tinnitus “fill in” the silent gaps? Noise Health. 2013;15(67):398-405. [DOI:10.4103/1463-1741.121232]
15. Ku Y, Kim DY, Kwon C, Noh TS, Park MK, Lee JH, et al. Effect of age on the gap-prepulse inhibition of the cortical N1-P2 complex in humans as a step towards an objective measure of tinnitus. PLoS One. 2020;15(11):e0241136. [DOI:10.1371/journal.pone.0241136]
16. Boutros NN, Belger A. Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biol Psychiatry. 1999;45(7):917-22. [DOI:10.1016/s0006-3223(98)00253-4]
17. Pratt H. Middle latency responses. In: Burkard RF, Don M, Eggermont JJ, editors. Auditory Evoked Potentials: Basic Principles and Clinical Application. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 466-67.
18. Dejonckere PH, Coryn CP. A comparison between middle latency responses and late auditory evoked potentials for approximating frequency-specific hearing levels in medicolegal patients with occupational hearing loss. Int Tinnitus J. 2000;6(2):175-81.
19. Picton TW, Hillyard SA. Human auditory evoked potentials. II. Effects of attention. Electroencephalogr Clin Neurophysiol. 1974;36(2):191-9. [DOI:10.1016/0013-4694(74)90156-4]
20. de Almeida FS, Pialarissi PR, Paiva Júnior LE, Almeida MA, Silva A. Auditory middle latency evoked responses: a standardizing study. Braz J Otorhinolaryngol. 2006;72(2):227-34. [DOI:10.1016/s1808-8694(15)30060-4]
21. Alhussaini K, Bohorquez J, Delgado RE, Ozdamar O. Auditory brainstem, middle and late latency responses to short gaps in noise at different presentation rates. Int J Audiol. 2018;57(6):399-406. [DOI:10.1080/14992027.2018.1428373]
22. Smith DA, Boutros NN, Schwarzkopf SB. Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology. 1994;31(5):495-502. [DOI:10.1111/j.1469-8986.1994.tb01053.x]
23. Rosburg T, Trautner P, Korzyukov OA, Boutros NN, Schaller C, Elger CE, et al. Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100. Neurosci Lett. 2004;372(3):245-9. [DOI:10.1016/j.neulet.2004.09.047]
24. Schall U, Schön A, Zerbin D, Bender S, Eggers C, Oades RD. A left temporal lobe impairment of auditory information processing in schizophrenia: an event-related potential study. Neurosci Lett. 1997;229(1):25-8. [DOI:10.1016/s0304-3940(97)00403-5]
25. Broberg BV, Oranje B, Glenthøj BY, Fejgin K, Plath N, Bastlund JF. Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia--gating of auditory-evoked potentials and prepulse inhibition. Behav Brain Res. 2010;213(2):142-7. [DOI:10.1016/j.bbr.2010.04.026]
26. Campbell J, Bean C, LaBrec A. Normal hearing young adults with mild tinnitus: Reduced inhibition as measured through sensory gating. Audiol Res. 2018;8(2):214. [DOI:10.4081/audiores.2018.214]
27. Murofushi T, Goto F, Tsubota M. Vestibular Migraine Patients Show Lack of Habituation in Auditory Middle Latency Responses to Repetitive Stimuli: Comparison With Meniere’s Disease Patients. Front Neurol. 2020;11:24. [DOI:10.3389/fneur.2020.00024]
28. Fletcher PJ, Selhi ZF, Azampanah A, Sills TL. Reduced brain serotonin activity disrupts prepulse inhibition of the acoustic startle reflex. Effects of 5,7-dihydroxytryptamine and p-chlorophenylalanine. Neuropsychopharmacology. 2001;24(4):399-409. [DOI:10.1016/S0893-133X(00)00215-3]
29. Buus S, Florentine M. Detection of a temporal gap as a function of level and frequency. J Acoust Soc Am. 1982;72(Suppl. 1):S89.
30. Lei M, Ding Y, Meng Q. Neural Correlates of Attentional Modulation of Prepulse Inhibition. Front Hum Neurosci. 2021;15:649566
31. Hall JW. Handbook of auditory evoked responses. Boston: Allyn & Bacon; 1992.
32. Neves IF, Gonçalves IC, Leite RA, Magliaro FC, Matas CG. Middle latency response study of auditory evoked potentials amplitudes and lantencies audiologically normal individuals. Braz J Otorhinolaryngol. 2007;73(1):69-74. [DOI:10.1016/s1808-8694(15)31125-3]
Files
IssueVol 33 No 4 (2024) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v33i4.16651
Keywords
Prepulse inhibition tinnitus auditory middle latency responses

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Seraji H, Mohammadkhani G, Afzalzadeh MR. Investigating the Feasibility of Gap Prepulse Inhibition by Auditory Middle Latency Responses in Healthy Subjects. Aud Vestib Res. 2024;33(4):330-338.