Auditory Efferent Pathway Functioning in Individuals with Misophonia
Abstract
Background and Aim: Misophonia, characterized by a decreased tolerance for specific auditory stimuli, has been insufficiently explored within audiology. Limited research has been conducted, and the auditory mechanisms involved in this disorder remain to be explored. Hence, our study aimed to investigate the auditory efferent systems in individuals with misophonia. By focusing on this specific aspect, we aim to contribute to a better understanding of misophonia and shed light on the underlying auditory mechanisms involved in the condition.
Methods: A cross-sectional research was performed with students from Mysore University to investigate misophonia. The severity of misophonia was evaluated using the revised Amsterdam misophonia scale. The participants were divided into two groups based on their misophonia severity: mild (n=15) and moderate-severe (n=15). All participants underwent transient evoked otoacoustic emissions with contralateral suppression to assess the auditory function. The overall amplitude and frequency-specific amplitudes were analyzed and compared across the various groups.
Results: The analysis of variance results revealed no significant differences between the groups in global amplitude suppression and suppression of all frequencies. These findings imply that the medial-olivocochlear bundle efferent pathway is intact among individuals with misophonia.
Conclusion: Our findings have concluded that the medial olivocochlear bundle appears intact among individuals with misophonia (p>0.05). However, it is essential to note that the generalizability of these findings may be limited due to the relatively small sample size used in our study. Therefore, further research involving a more extensive and diverse population is needed to validate and generalize these conclusions.
2. Jastreboff PJ, Jastreboff MM. Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis. Handb Clin Neurol. 2015;129:375-87. [DOI:10.1016/B978-0-444-62630-1.00021-4]
3. Aryal S, Prabhu P. Misophonia: Prevalence, impact and comorbidity among Mysore University students in India - A survey. Neuroscience Research Notes. 2022;5(4):161. [DOI:10.31117/neuroscirn.v5i4.161]
4. Naylor J, Caimino C, Scutt P, Hoare DJ, Baguley DM. The Prevalence and Severity of Misophonia in a UK Undergraduate Medical Student Population and Validation of the Amsterdam Misophonia Scale. Psychiatr Q. 2021;92(2):609-19. [DOI:10.1007/s11126-020-09825-3]
5. Aryal S, Prabhu P. Awareness and perspectives of audiologists on assessment and management of misophonia in India. J Otol. 2023;18(2):104-10. [DOI:10.1016/j.joto.2023.02.003]
6. Baguley DM. Hyperacusis. J R Soc Med. 2003;96(12):582-5. [DOI:10.1177/014107680309601203]
7. Henry JA, Theodoroff SM, Edmonds C, Martinez I, Myers PJ, Zaugg TL, et al. Sound Tolerance Conditions (Hyperacusis, Misophonia, Noise Sensitivity, and Phonophobia): Definitions and Clinical Management. Am J Audiol. 2022;31(3):513-27. [DOI:10.1044/2022_AJA-22-00035]
8. Aryal S, Prabhu P. Auditory cortical functioning in individuals with misophonia: an electrophysiological investigation. Eur Arch Otorhinolaryngol. 2024;281(5):2259-73. [DOI:10.1007/s00405-023-08318-w]
9. Dozier TH, Morrison KL. Phenomenology of Misophonia: Initial Physical and Emotional Responses. The American Journal of Psychology. 2017;130(4):431-8. [DOI:10.5406/amerjpsyc.130.4.0431]
10. Aryal S, Prabhu P. Auditory brainstem functioning in individuals with misophonia. J Otol. 2023;18(3):139-45. [DOI:10.1016/j.joto.2023.05.006]
11. Grossini E, Stecco A, Gramaglia C, De Zanet D, Cantello R, Gori B, et al. Misophonia: Analysis of the neuroanatomic patterns at the basis of psychiatric symptoms and changes of the orthosympathetic/ parasympathetic balance. Front Neurosci. 2022;16:827998. [DOI:10.3389/fnins.2022.827998]
12. Danesh A, Aazh H. Misophonia: A Neurologic, Psychologic, and Audiologic Complex. Hear J. 2020;73(3):20,22,23. [DOI:10.1097/01.HJ.0000657984.74790.d5]
13. Schröder A, van Diepen R, Mazaheri A, Petropoulos-Petalas D, Soto de Amesti V, Vulink N, et al. Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients. Front Behav Neurosci. 2014;8:123. [DOI:10.3389/fnbeh.2014.00123]
14. Schröder A, San Giorgi R, Van Wingen G, Vulink N, Denys D. P.1.i.015 Impulsive aggression in misophonia: results from a functional magnetic resonance imaging study. European Neuropsychopharmacology. 2015;25(Suppl 2):S307-8. [DOI:10.1016/S0924-977X(15)30374-6]
15. Webb J. β-Blockers for the Treatment of Misophonia and Misokinesia. Clin Neuropharmacol. 2022;45(1):13-4. [DOI:10.1097/WNF.0000000000000492]
16. Aryal S, Prabhu P. Understanding misophonia from an audiological perspective: a systematic review. Eur Arch Otorhinolaryngol. 2023;280(4):1529-45. [DOI:10.1007/s00405-22-07774-0]
17. Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589-607. [DOI:10.1097/01.aud.0000240507.83072.e7]
18. Ciuman RR. The efferent system or olivocochlear function bundle - fine regulator and protector of hearing perception. Int J Biomed Sci. 2010;6(4):276-88.
19. Probst R, Harris FP. A comparison of transiently evoked and distortion-product otoacoustic emissions in humans. Prog Brain Res. 1993;97:91-9. [DOI:10.1016/s0079-6123(08)62266-9]
20. Sturm JJ, Weisz CJ. Hyperactivity in the medial olivocochlear efferent system is a common feature of tinnitus and hyperacusis in humans. J Neurophysiol. 2015;114(5):2551-4. [DOI:10.1152/jn.00948.2014]
21. Tayade A, Tucker D. Evaluation of Medial Olivocochlear Neural Efferent Pathway in Tinnitus Perception in Normal-hearing Individuals. Int Tinnitus J. 2022;26(1):20-6. [DOI:10.5935/0946-5448.20220004]
22. Jager I, de Koning P, Bost T, Denys D, Vulink N. Misophonia: Phenomenology, comorbidity and demographics in a large sample. PLoS One. 2020;15(4):e0231390. [DOI:10.1371/journal.pone.0231390]
23. Schröder A, Vulink N, Denys D. Misophonia: diagnostic criteria for a new psychiatric disorder. PLoS One. 2013;8(1):e54706. [DOI:10.1371/journal.pone.0054706]
24. Zacharia T, Naik PV, Sada S, Kuniyil JG, Dwarakanath VM. Development and standardization of tinnitus handicap inventory in Kannada. Int Tinnitus J. 2012;17(2):117-23. [DOI:10.5935/0946-5448.20120022]
25. Siepsiak M, Rosenthal MZ, Raj-Koziak D, Dragan W. Psychiatric and audiologic features of misophonia: Use of a clinical control group with auditory over-responsivity. J Psychosom Res. 2022;156:110777. [DOI:10.1016/j.jpsychores.2022.110777]
26. Frank T. ANSI Update: Specification of Audiometers. Am J Audiol. 1997;6(3):29-32. [DOI:10.1044/1059-0889.0603.29]
27. Davis H, Kranz Fw. The international standard reference zero for pure-tone audiometers and its relation to the evaluation on impairment of hearing. J Speech Hear Res. 1964;7:7-16. [DOI:10.1044/jshr.0701.07]
28. Berlin CI, Hood LJ, Wen H, Szabo P, Cecola RP, Rigby P, et al. Contralateral suppression of non-linear click-evoked optoacoustic emissions. Hear Res. 1993;71(1-2):1-11. [DOI:10.1016/0378-5955(93)90015-s]
29. De Ceulaer G, Yperman M, Daemers K, Van Driessche K, Somers T, Offeciers FE, et al. Contralateral suppression of transient evoked otoacoustic emissions: normative data for a clinical test set-up. Otol Neurotol. 2001;22(3):350-5. [DOI:10.1097/00129492-200105000-00013]
30. Suraj U, Nisha KV, Prabhu P. Normal linear and non-linear cochlear mechanisms and efferent system functioning in individuals with misophonia. Eur Arch Otorhinolaryngol. 2023. [DOI:10.1007/s00405-023-08273-6]
31. Attias J, Bresloff I, Furman V. The influence of the efferent auditory system on otoacoustic emissions in noise induced tinnitus: clinical relevance. Acta Otolaryngol. 1996;116(4):534-9. [DOI:10.3109/00016489609137885]
32. Attias J, Zwecker-Lazar I, Nageris B, Keren O, Groswasser Z. Dysfunction of the auditory efferent system in patients with traumatic brain injuries with tinnitus and hyperacusis. J Basic Clin Physiol Pharmacol. 2005;16(2-3):117-26. [DOI:10.1515/jbcpp.2005.16.2-3.117]
33. Riga M, Papadas T, Werner JA, Dalchow CV. A clinical study of the efferent auditory system in patients with normal hearing who have acute tinnitus. Otol Neurotol. 2007;28(2):185-90. [DOI:10.1097/MAO.0b013e31802e2a14]
34. Kumar S, Dheerendra P, Erfanian M, Benzaquén E, Sedley W, Gander PE, et al. The Motor Basis for Misophonia. J Neurosci. 2021;41(26):5762-70. [DOI:10.1523/JNEUROSCI.0261-21.2021]
35. Kumar S, Tansley-Hancock O, Sedley W, Winston JS, Callaghan MF, Allen M, et al. The Brain Basis for Misophonia. Curr Biol. 2017;27(4):527-33. [DOI:10.1016/j.cub.2016.12.048]
36. Schröder A, van Wingen G, Eijsker N, San Giorgi R, Vulink NC, Turbyne C, Denys D. Misophonia is associated with altered brain activity in the auditory cortex and salience network. Sci Rep. 2019;9(1):7542. [DOI:10.1038/s41598-019-44084-8]
Files | ||
Issue | Vol 33 No 4 (2024) | |
Section | Research Article(s) | |
DOI | https://doi.org/10.18502/avr.v33i4.16652 | |
Keywords | ||
Misophonia efferent pathway contralateral suppression neurophysiology audiology |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |