The Effects of Age of Onset and Years of Musical Training on Consonant Recognition in Musicians
Abstract
Background and Aim: Previous research has shown that musicians outperformed non-musicians on consonant recognition in the presence of noise. This experiment aimed to determine the effects of two important variables on this musician advantage: the age of start of musical training, and the number of years of musical activity.
Methods: Thirty-six musicians with a starting age of 4-8 and at least 10 years of musical training, were required to listen to consonant-vowel-consonant (CVC) syllable tokens presented in twelve-talker babble noise and write them down. Multiple linear regression analysis was performed to determine the effects of age of musical training onset and years of musical training on the recognition of stops and fricatives among young musicians.
Results: Regression analysis revealed that starting age of musical training, rather than years of musical activity, significantly predicted consonant recognition in noise.
Conclusion: This study strongly suggests that an early start of musical training improves the ability to detect consonants in challenging listening environments.
2. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8(9):1148-50. [DOI:10.1038/nn1516]
3. Parbery-Clark A, Skoe E, Kraus N. Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci. 2009;29(45):14100-7. [DOI:10.1523/JNEUROSCI.3256-09.2009]
4. Shahin AJ. Neurophysiological influence of musical training on speech perception. Front Psychol. 2011;2:126. [DOI:10.3389/fpsyg.2011.00126]
5. Skoe E, Kraus N. Musical training heightens auditory brainstem function during sensitive periods in development. Front Psychol. 2013;4:622. [DOI:10.3389/fpsyg.2013.00622]
6. Besson M, Chobert J, Marie C. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory. Front Psychol. 2011;2:94. [DOI:10.3389/fpsyg.2011.00094]
7. Musso M, Fürniss H, Glauche V, Urbach H, Weiller C, Rijntjes M. Musicians use speech-specific areas when processing tones: The key to their superior linguistic competence? Behav Brain Res. 2020;390:112662. [DOI:10.1016/j.bbr.2020.112662]
8. Coffey EB, Herholz SC, Chepesiuk AM, Baillet S, Zatorre RJ. Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun. 2016;7:11070. [DOI:10.1038/ncomms11070]
9. Parbery-Clark A, Tierney A, Strait DL, Kraus N. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience. 2012;219:111-9. [DOI:10.1016/j.neuroscience.2012.05.042]
10. Ruggles DR, Freyman RL, Oxenham AJ. Influence of musical training on understanding voiced and whispered speech in noise. PLoS One. 2014;9(1):e86980. [DOI:10.1371/journal.pone.0086980]
11. Zendel BR, Tremblay CD, Belleville S, Peretz I. The impact of musicianship on the cortical mechanisms related to separating speech from background noise. J Cogn Neurosci. 2015;27(5):1044-59. [DOI:10.1162/jocn_a_00758]
12. Lisker L, Abramson AS. Some effects of context on voice onset time in English stops. Lang Speech. 1967;10(1):1-28. [DOI:10.1177/002383096701000101]
13. Musacchia G, Sams M, Skoe E, Kraus N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci U S A. 2007;104(40):15894-8.
14. Lee KM, Skoe E, Kraus N, Ashley R. Selective subcortical enhancement of musical intervals in musicians. J Neurosci. 2009;29(18):5832-40. [DOI:10.1523/JNEUROSCI.6133-08.2009]
15. Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear Hear. 2009;30(6):653-61. [DOI:10.1097/AUD.0b013e3181b412e9]
16. Coffey EBJ, Chepesiuk AMP, Herholz SC, Baillet S, Zatorre RJ. Neural Correlates of Early Sound Encoding and their Relationship to Speech-in-Noise Perception. Front Neurosci. 2017;11:479.
17. Li N, Loizou PC. The contribution of obstruent consonants and acoustic landmarks to speech recognition in noise. J Acoust Soc Am. 2008;124(6):3947. [DOI:10.1121/1.2997435]
18. Kewley-Port D, Burkle TZ, Lee JH. Contribution of consonant versus vowel information to sentence intelligibility for young normal-hearing and elderly hearing-impaired listeners. J Acoust Soc Am. 2007;122(4):2365-75. [DOI:10.1121/1.2773986]
19. Boebinger D, Evans S, Rosen S, Lima CF, Manly T, Scott SK. Musicians and non-musicians are equally adept at perceiving masked speech. J Acoust Soc Am. 2015;137(1):378-87. [DOI:10.1121/1.4904537]
20. Sajjadi E, Mohammadzadeh A, Sayadi N, Nazeri A, Tabatabai SM. Comparison of the recognition scores of stop and fricative consonants in babble noise between musicians and non-musicians. Psychol Music. 2021;49(5):1344-55. [DOI:1177/0305735620953616]
21. Schön D, Tillmann B. Short- and long-term rhythmic interventions: perspectives for language rehabilitation. Ann N Y Acad Sci. 2015;1337:32-9. [DOI:10.1111/nyas.12635]
22. Ahmadi A, Fatahi J, Keshani A, Jalilvand H, Modarresi Y, Jalaie S. [Developing and evaluating the reliability of acceptable noise level test in Persian language]. J Rehab Med. 2015;4(2):109-17. Persian.
23. Buus S. Release from masking caused by envelope fluctuations. J Acoust Soc Am. 1985;78(6):1958-65. [DOI:10.1121/1.392652]
24. Carhart R, Tillman TW, Greetis ES. Perceptual masking in multiple sound backgrounds. J Acoust Soc Am. 1969;45(3):694-703. [DOI:10.1121/1.1911445]
25. Mosleh M. [Development and Evaluation of a Speech Recognition Test for Persian Speaking Adults]. Audiol. 2001;9(1-2):72-6. Persian.
26. McLeod S, Crowe K. Children's Consonant Acquisition in 27 Languages: A Cross-Linguistic Review. Am J Speech Lang Pathol. 2018;27(4):1546-71. [DOI:10.1044/2018_AJSLP-17-0100]
27. Strait DL, Kraus N, Skoe E, Ashley R. Musical experience and neural efficiency: effects of training on subcortical processing of vocal expressions of emotion. Eur J Neurosci. 2009;29(3):661-8. [DOI:10.1111/j.1460-9568.2009.06617.x]
28. Strait DL, Parbery-Clark A, O'Connell S, Kraus N. Biological impact of preschool music classes on processing speech in noise. Dev Cogn Neurosci. 2013;6:51-60. [DOI:10.1016/j.dcn.2013.06.003]
29. Carreiras M, Price CJ. Brain activation for consonants and vowels. Cereb Cortex. 2008;18(7):1727-35. [DOI:10.1093/cercor/bhm202]
30. Vaquero L, Hartmann K, Ripollés P, Rojo N, Sierpowska J, François C, et al. Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage. 2016;126:106-19. [DOI:10.1016/j.neuroimage.2015.11.008]
31. Chobert J, Marie C, François C, Schön D, Besson M. Enhanced passive and active processing of syllables in musician children. J Cogn Neurosci. 2011;23(12):3874-87. [DOI:10.1162/jocn_a_00088]
32. Cho E. Sensitive periods for music training from a cognitive neuroscience perspective: A review of the literature with implications for teaching practice. International Journal of Music in Early Childhood. 2019;14(1):17-33. [DOI:10.1386/ijmec.14.1.17_1]
33. Penhune VB. Sensitive periods in human development: evidence from musical training. Cortex. 2011;47(9):1126-37. [DOI:10.1016/j.cortex.2011.05.010]
Files | ||
Issue | Articles in Press | |
Section | Research Article(s) | |
Keywords | ||
Speech in noise speech perception music perception musical training age of acquisition consonant recognition |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |