Research Article

Effect of Noisy Galvanic Vestibular Stimulation on Spatial Learning and Memory of Rats

Abstract

Background and Aim: Previous studies have shown promising findings on effectiveness of noisy Galvanic Vestibular Stimulation (nGVS) in various cognitive disorders. The connections of the vestibular system with the hippocampus has been proven. Here we investigated the effect of vestibular galvanic stimulation on the improvement of spatial learning and memory of rats.
Methods: Twelve Wistar rats were randomly divided into control and nGVS groups. The nGVS group underwent 30-minute sessions of stimulation at sub-threshold levels for a duration of fourteen days. Following the intervention, both groups underwent assessments of cognitive indices through the Morris water maze task, hippocampal neuronal spike rate by Single-Unit Recording (SUR) and the concentrations of c-fos protein in the hippocampus were measured using ELISA device.
Results: The nGVS group exhibited a significant difference compared to the control group in both the time taken to reach the target platform and the percentage of time spent in the goal quarter during the Morris water maze test. The nGVS treatment significantly enhanced spike rate of hippocampal dentate gyrus (p<0.01) compared to the control group. Additionally, c-fos protein concentrations were increased in the nGVS (5.833) than the control group (4.126), (p<0.001).
Conclusion: According to the obtained results, nGVS plays a role in improving spatial memory, and a longer duration of intervention is suggested to achieve more obvious improvement results.

1. Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Exp Brain Res. 2000;130(3):277-97. [DOI:10.1007/s002210050033]
2. Chan YS, Chen LW, Lai CH, Shum DK, Yung KK, Zhang FX. Receptors of glutamate and neurotrophin in vestibular neuronal functions. J Biomed Sci. 2003;10(6 Pt 1):577-87. [DOI:10.1159/000073522]
3. Previc FH. Vestibular loss as a contributor to Alzheimer’s disease. Med Hypotheses. 2013;80(4):360-7. [DOI:10.1016/j.mehy.2012.12.023]
4. Lopez C, Blanke O, Mast FW. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience. 2012;212:159-79. [DOI:10.1016/j.neuroscience.2012.03.028]
5. Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol. 2001;85(2):886-99. [DOI:10.1152/jn.2001.85.2.886]
6. Holstein GR, Friedrich VL Jr, Martinelli GP, Ogorodnikov D, Yakushin SB, Cohen B. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation. Front Neurol. 2012;3:4. [DOI:10.3389/fneur.2012.00004]
7. Zheng Y, Darlington CL, Smith PF. Bilateral labyrinthectomy causes long-term deficit in object recognition in rat. Neuroreport. 2004;15(12):1913-6. [DOI:10.1097/00001756-200408260-00016]
8. Tai SK, Leung LS. Vestibular stimulation enhances hippocampal long-term potentiation via activation of cholinergic septohippocampal cells. Behav Brain Res. 2012;232(1):174-82. [DOI:10.1016/j.bbr.2012.04.013]
9. Kim DJ, Yogendrakumar V, Chiang J, Ty E, Wang ZJ, McKeown MJ. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns. PLoS One. 2013;8(7):e69055. [DOI:10.1371/journal.pone.0069055]
10. Lee JW, Lee GE, An JH, Yoon SW, Heo M, Kim HY. Effects of galvanic vestibular stimulation on visual memory recall and EEG. J Phys Ther Sci. 2014;26(9):1333-6. [DOI:10.1589/jpts.26.1333]
11. Adel Ghahraman M, Zahmatkesh M, Pourbakht A, Seifi B, Jalaie S, Adeli S, et al. Noisy galvanic vestibular stimulation enhances spatial memory in cognitive impairment-induced by intracerebroventricular-streptozotocin administration. Physiol Behav. 2016;157:217-24. [DOI:10.1016/j.physbeh.2016.02.021]
12. Duelli R, Schröck H, Kuschinsky W, Hoyer S. Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci. 1994;12(8):737-43. [DOI:10.1016/0736-5748(94)90053-1]
13. Jee YS, Ko IG, Sung YH, Lee JW, Kim YS, Kim SE, et al. Effects of treadmill exercise on memory and c-Fos expression in the hippocampus of the rats with intracerebroventricular injection of streptozotocin. Neurosci Lett. 2008;443(3):188-92. [DOI:10.1016/j.neulet.2008.07.078]
14. Arabmoazzen S, Mirshekar MA. Evaluation of the effects of metformin as adenosine monophosphate-activated protein kinase activator on spatial learning and memory in a rat model of multiple sclerosis disease. Biomed Pharmacother. 2021;141:111932. [DOI:10.1016/j.biopha.2021.111932]
15. Shaabani M, Lotfi Y, Karimian SM, Rahgozar M, Hooshmandi M. Short-term galvanic vestibular stimulation promotes functional recovery and neurogenesis in unilaterally labyrinthectomized rats. Brain Res. 2016;1648(Pt A):152-62. [DOI:10.1016/j.brainres.2016.07.029]
16. Nguyen TT, Nam GS, Han GC, Le C, Oh SY. The Effect of Galvanic Vestibular Stimulation on Visuospatial Cognition in an Incomplete Bilateral Vestibular Deafferentation Mouse Model. Front Neurol. 2022;13:857736. [DOI:10.3389/fneur.2022.857736]
17. Mirshekar MA, Miri S, Shahraki A. A Survey of the Effects of Diosmin on Learning and Memory Following the Use of Paraquat Herbicide Poisoning in a Model of Rats. Shiraz E-Med J. 2020;21(5):e94143.[DOI:10.5812/semj.94143]
18. Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res Rev. 2011;67(1-2):119-46. [DOI:10.1016/j.brainresrev.2010.12.002]
19. Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267-81. [DOI:10.1016/j.clinph.2003.09.014]
20. McDonnell MD, Abbott D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol. 2009;5(5):e1000348. [DOI:10.1371/journal.pcbi.1000348]
21. Ning H, Cao D, Wang H, Kang B, Xie S, Meng Y. Effects of haloperidol, olanzapine, ziprasidone, and PHA-543613 on spatial learning and memory in the Morris water maze test in naïve and MK-801-treated mice. Brain Behav. 2017;7(8):e00764. [DOI:10.1002/brb3.764]
22. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331-56. [DOI:10.1113/jphysiol.1973.sp010273]
23. Vann SD, Brown MW, Erichsen JT, Aggleton JP. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. J Neurosci. 2000;20(7):2711-8. [DOI:10.1523/JNEUROSCI.20-07-02711.2000]
24. Hilliard D, Passow S, Thurm F, Schuck NW, Garthe A, Kempermann G, et al. Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Sci Rep. 2019;9(1):9310. [DOI:10.1038/s41598-019-45757-0]
25. Wilkinson D, Nicholls S, Pattenden C, Kilduff P, Milberg W. Galvanic vestibular stimulation speeds visual memory recall. Exp Brain Res. 2008;189(2):243-8. [DOI:10.1007/s00221-008-1463-0]
26. Wilkinson D, Ko P, Kilduff P, McGlinchey R, Milberg W. Improvement of a face perception deficit via subsensory galvanic vestibular stimulation. J Int Neuropsychol Soc. 2005;11(7):925-9. [DOI:10.1017/s1355617705051076]
27. Naghizadeh M, Mirshekar MA, Montazerifar F, Saadat S, Shamsi Koushki A, Jafari Maskouni S, et al. Effects of quercetin on spatial memory, hippocampal antioxidant defense and BDNF concentration in a rat model of Parkinson’s disease: An electrophysiological study. Avicenna J Phytomed. 2021;11(6):599-609. [DOI:10.22038/AJP.2021.18526]
28. Devi NP, Mukkadan JK. Impact of rotatory vestibular stimulation in memory boosting. MOJ Anat Physiol. 2017;4(4):337-42. [DOI:10.15406/mojap.2017.04.00143]
29. Klatt BN, Ries JD, Dunlap PM, Whitney SL, Agrawal Y. Vestibular Physical Therapy in Individuals With Cognitive Impairment: A Theoretical Framework. J Neurol Phys Ther. 2019;43 Suppl 2 (Suppl 2 Spec INTERNATIONAL CONFERENCE ON VESTIBULAR REHABILITATION):S14-S19.
Files
IssueVol 33 No 3 (2024) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v33i3.15508
Keywords
Galvanic vestibular stimulation spatial cognition single-unit recording hippocampus rat

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Soufinia B, Lotfi Y, Mirshekar MA, Shaabani M, Bakhshi E. Effect of Noisy Galvanic Vestibular Stimulation on Spatial Learning and Memory of Rats. Aud Vestib Res. 2024;33(3):263-272.