Research Article

Is It Possible to Use the Speech-Evoked Auditory Brainstem Response Test During Sleep as It Is Used During Wakefulness?

Abstract

Background and Aim: It is important to know how much are the auditory electrophysiological tests affected by sleep and wakefulness to be employed in different situations. This problem is more important for the speech-evoked Auditory Brainstem Response (speech-ABR) test that is affected by higher-level processing. This study aimed to compare the results of the speech-ABR test between wakefulness and sleep states.
Methods: Sixteen young male adults (aged 20–28 years) with normal hearing participated in this study. The speech-ABR to the /da/ syllable was recorded during wakefulness and sleep. Electroencephalography (EEG) and behavioral tests (eyes position, body movements, etc.) were monitored during the test time to confirm the sleep state.
Results: The speech-ABR test parameters showed significant changes during sleep compared to wakefulness (latencies of waves V and A were longer and the amplitudes of waves V and A, the slope of V-A complex, and the spectral magnitude of F1 were lower). However, the spectral magnitude of higher frequencies was not significantly different. In addition, no significant statistical difference was observed in speech-ABR parameters between right and left ears.
Conclusion: Although the speech-ABR originates from brainstem centers, unlike conventional click-evoked ABR, it is affected by sleep as it is affected by the higher-level auditory processing functions. Although, further studies are needed. However, our study opens the way for many applied auditory studies about the possibility to use speech-ABR for auditory processing assessments in sleep state of different population groups, such as neonates.

1. Skoe E, Kraus N. Auditory brain stem response to complex sounds: a tutorial. Ear Hear. 2010;31(3):302-24. [DOI:10.1097/AUD.0b013e3181cdb272]
2. Kraus N, Nicol T. Brainstem origins for cortical ‘what’ and ‘where’ pathways in the auditory system. Trends Neurosci. 2005;28(4):176-81. [DOI:10.1016/j.tins.2005.02.003]
3. Hall III JW. eHandbook of auditory evoked responses: principles, procedures and protocols. Pretoria: Pearson; 2015.
4. Moossavi A, Lotfi Y, Javanbakht M, Faghihzadeh S. Speechevoked auditory brainstem response: a review of stimulation and acquisition parameters. Aud Vestib Res. 2019;28(2):75-86. [DOI:10.18502/avr.v28i2.861]
5. Lotfi Y, Moossavi A, Javanbakht M, Faghih Zadeh S. Speech-ABR in contralateral noise: A potential tool to evaluate rostral part of the auditory efferent system. Med Hypotheses. 2019;132:109355. [DOI:10.1016/j.mehy.2019.109355]
6. Kumar P, Anil SP, Grover V, Sanju HK, Sinha S. Cortical and subcortical processing of short duration speech stimuli in trained rock musicians: a pilot study. Eur Arch Otorhinolaryngol. 2017;274(2):1153-60. [DOI:10.1007/s00405-016-4285-x]
7. Rocha-Muniz CN, Befi-Lopes DM, Schochat E. Sensitivity, specificity and efficiency of speech-evoked ABR. Hear Res. 2014;317:15-22. [DOI:10.1016/j.heares.2014.09.004]
8. Tahaei AA, Ashayeri H, Pourbakht A, Kamali M. Speech evoked auditory brainstem response in stuttering. Scientifica (Cairo). 2014;2014:328646. [DOI:10.1155/2014/328646]
9. King C, Warrier CM, Hayes E, Kraus N. Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci Lett. 2002;319(2):111-5. [DOI:10.1016/s0304-3940(01)02556-3]
10. Osterhammel PA, Shallop JK, Terkildsen K. The effect of sleep on the auditory brainstem response (ABR) and the middle latency response (MLR). Scand Audiol. 1985;14(1):47-50. [DOI:10.3109/01050398509045921]
11. Miller DB, O’Callaghan JP. The pharmacology of wakefulness. Metabolism. 2006;55(10 Suppl 2):S13-9. [DOI:10.1016/j.metabol.2006.07.007]
12. Grandner MA, Fernandez FX. The translational neuroscience of sleep: A contextual framework. Science. 2021;374(6567):568-73. [DOI:10.1126/science.abj8188]
13. Sullivan SS, Carskadon MA, Dement WC, Jackson CL. Normal Human Sleep: An Overview. In: Kryger MH, Roth T, Goldstein CA, editors. Kryger’s Principles and Practice of Sleep Medicine. 7th ed. [e-Book]. Philadelphia: Elsevier Health Sciences; 2021. p. 16-26.
14. El Shakankiry HM. Sleep physiology and sleep disorders in childhood. Nat Sci Sleep. 2011;3:101-14. [DOI:10.2147/NSS.S22839]
15. Avidan AY. Normal Sleep in Humans. In: Kryger MH, Avidan AY, Goldstein C, editors. Atlas of Clinical Sleep Medicine. 3rd ed. [e-Book: Expert Consult - Online]. Saint Louis: Elsevier Health Sciences; 2022. p. 83-116.
16. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591-605. [DOI:10.1038/nrn895]
17. Tlumak AI, Durrant JD, Delgado RE, Boston JR. Steadystate analysis of auditory evoked potentials over a wide range of stimulus repetition rates in awake vs. natural sleep. Int J Audiol. 2012;51(5):418-23.
18. Muller-Gass A, Campbell K. Event-related potential measures of gap detection threshold during natural sleep. Clin Neurophysiol. 2014;125(8):1647-52. [DOI:10.1016/j.clinph.2013.11.043]
19. Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000;28(3):991-9. [DOI:10.1016/s0896-6273(00)00169-0]
20. Mamo SK, Grose JH, Buss E. Speech-evoked ABR: Effects of age and simulated neural temporal jitter. Hear Res. 2016;333:201-9. [DOI:10.1016/j.heares.2015.09.005]
21. Krizman J, Skoe E, Kraus N. Sex differences in auditory subcortical function. Clin Neurophysiol. 2012;123(3):590-7. [DOI:10.1016/j.clinph.2011.07.037]
22. Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J Neurosci Methods. 2012;208(2):181-9. [DOI:10.1016/j.jneumeth.2012.05.017]
23. Landis CA. Physiological and behavioral Aspects of Sleep. In: Redeker NS, McEnany GP, editors. Sleep Disorders and Sleep Promotion in Nursing Practice. 1st ed. New York: Springer Publishing Company; 2011. p. 1-18.
24. Fu Q, Wang T, Liang Y, Lin Y, Zhao X, Wan J, et al. Auditory Deficits in Patients With Mild and Moderate Obstructive Sleep Apnea Syndrome: A Speech Syllable Evoked Auditory Brainstem Response Study. Clin Exp Otorhinolaryngol. 2019;12(1):58-65. [DOI:10.4172/2155-9562.1000463]
25. Knebel JF, Jeanvoine A, Guignard F, Vesin JM, Richard C. Differences in Click and Speech Auditory Brainstem Responses and Cortical Response Patterns: A Pilot Study. J Neurol Neurophysiol. 2018;9(3):463. [DOI:10.4172/2155-9562.1000463]
26. Møller AR, Jho HD, Yokota M, Jannetta PJ. Contribution from crossed and uncrossed brainstem structures to the brainstem auditory evoked potentials: a study in humans. Laryngoscope. 1995;105(6):596-605. [DOI:10.1288/00005537-199506000-00007]
27. Akhoun I, Gallégo S, Moulin A, Ménard M, Veuillet E, Berger-Vachon C, et al. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clin Neurophysiol. 2008;119(4):922-33. [DOI:10.1016/j.clinph.2007.12.010]
28. Coffey EB, Herholz SC, Chepesiuk AM, Baillet S, Zatorre RJ. Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun. 2016;7:11070. [DOI:10.1038/ncomms11070]
29. Bidelman GM. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. Neuroimage. 2018;175:56-69. [DOI:10.1016/j.neuroimage.2018.03.060]
30. Liu LF, Palmer AR, Wallace MN. Phase-locked responses to pure tones in the inferior colliculus. J Neurophysiol. 2006;95(3):1926-35. [DOI:10.1152/jn.00497.2005]
Files
IssueVol 33 No 3 (2024) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v33i3.15503
Keywords
Auditory brainstem response speech acoustics sleep electroencephalography

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Khoshkhou A, Shaabani M, Bakhshi E, Javanbakht M. Is It Possible to Use the Speech-Evoked Auditory Brainstem Response Test During Sleep as It Is Used During Wakefulness?. Aud Vestib Res. 2024;33(3):219-226.