Is It Possible to Use the Speech-Evoked Auditory Brainstem Response Test During Sleep as It Is Used During Wakefulness?
Abstract
Background and Aim: It is important to know how much are the auditory electrophysiological tests affected by sleep and wakefulness to be employed in different situations. This problem is more important for the speech-evoked Auditory Brainstem Response (speech-ABR) test that is affected by higher-level processing. This study aimed to compare the results of the speech-ABR test between wakefulness and sleep states.
Methods: Sixteen young male adults (aged 20–28 years) with normal hearing participated in this study. The speech-ABR to the /da/ syllable was recorded during wakefulness and sleep. Electroencephalography (EEG) and behavioral tests (eyes position, body movements, etc.) were monitored during the test time to confirm the sleep state.
Results: The speech-ABR test parameters showed significant changes during sleep compared to wakefulness (latencies of waves V and A were longer and the amplitudes of waves V and A, the slope of V-A complex, and the spectral magnitude of F1 were lower). However, the spectral magnitude of higher frequencies was not significantly different. In addition, no significant statistical difference was observed in speech-ABR parameters between right and left ears.
Conclusion: Although the speech-ABR originates from brainstem centers, unlike conventional click-evoked ABR, it is affected by sleep as it is affected by the higher-level auditory processing functions. Although, further studies are needed. However, our study opens the way for many applied auditory studies about the possibility to use speech-ABR for auditory processing assessments in sleep state of different population groups, such as neonates.
2. Kraus N, Nicol T. Brainstem origins for cortical ‘what’ and ‘where’ pathways in the auditory system. Trends Neurosci. 2005;28(4):176-81. [DOI:10.1016/j.tins.2005.02.003]
3. Hall III JW. eHandbook of auditory evoked responses: principles, procedures and protocols. Pretoria: Pearson; 2015.
4. Moossavi A, Lotfi Y, Javanbakht M, Faghihzadeh S. Speechevoked auditory brainstem response: a review of stimulation and acquisition parameters. Aud Vestib Res. 2019;28(2):75-86. [DOI:10.18502/avr.v28i2.861]
5. Lotfi Y, Moossavi A, Javanbakht M, Faghih Zadeh S. Speech-ABR in contralateral noise: A potential tool to evaluate rostral part of the auditory efferent system. Med Hypotheses. 2019;132:109355. [DOI:10.1016/j.mehy.2019.109355]
6. Kumar P, Anil SP, Grover V, Sanju HK, Sinha S. Cortical and subcortical processing of short duration speech stimuli in trained rock musicians: a pilot study. Eur Arch Otorhinolaryngol. 2017;274(2):1153-60. [DOI:10.1007/s00405-016-4285-x]
7. Rocha-Muniz CN, Befi-Lopes DM, Schochat E. Sensitivity, specificity and efficiency of speech-evoked ABR. Hear Res. 2014;317:15-22. [DOI:10.1016/j.heares.2014.09.004]
8. Tahaei AA, Ashayeri H, Pourbakht A, Kamali M. Speech evoked auditory brainstem response in stuttering. Scientifica (Cairo). 2014;2014:328646. [DOI:10.1155/2014/328646]
9. King C, Warrier CM, Hayes E, Kraus N. Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci Lett. 2002;319(2):111-5. [DOI:10.1016/s0304-3940(01)02556-3]
10. Osterhammel PA, Shallop JK, Terkildsen K. The effect of sleep on the auditory brainstem response (ABR) and the middle latency response (MLR). Scand Audiol. 1985;14(1):47-50. [DOI:10.3109/01050398509045921]
11. Miller DB, O’Callaghan JP. The pharmacology of wakefulness. Metabolism. 2006;55(10 Suppl 2):S13-9. [DOI:10.1016/j.metabol.2006.07.007]
12. Grandner MA, Fernandez FX. The translational neuroscience of sleep: A contextual framework. Science. 2021;374(6567):568-73. [DOI:10.1126/science.abj8188]
13. Sullivan SS, Carskadon MA, Dement WC, Jackson CL. Normal Human Sleep: An Overview. In: Kryger MH, Roth T, Goldstein CA, editors. Kryger’s Principles and Practice of Sleep Medicine. 7th ed. [e-Book]. Philadelphia: Elsevier Health Sciences; 2021. p. 16-26.
14. El Shakankiry HM. Sleep physiology and sleep disorders in childhood. Nat Sci Sleep. 2011;3:101-14. [DOI:10.2147/NSS.S22839]
15. Avidan AY. Normal Sleep in Humans. In: Kryger MH, Avidan AY, Goldstein C, editors. Atlas of Clinical Sleep Medicine. 3rd ed. [e-Book: Expert Consult - Online]. Saint Louis: Elsevier Health Sciences; 2022. p. 83-116.
16. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591-605. [DOI:10.1038/nrn895]
17. Tlumak AI, Durrant JD, Delgado RE, Boston JR. Steadystate analysis of auditory evoked potentials over a wide range of stimulus repetition rates in awake vs. natural sleep. Int J Audiol. 2012;51(5):418-23.
18. Muller-Gass A, Campbell K. Event-related potential measures of gap detection threshold during natural sleep. Clin Neurophysiol. 2014;125(8):1647-52. [DOI:10.1016/j.clinph.2013.11.043]
19. Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000;28(3):991-9. [DOI:10.1016/s0896-6273(00)00169-0]
20. Mamo SK, Grose JH, Buss E. Speech-evoked ABR: Effects of age and simulated neural temporal jitter. Hear Res. 2016;333:201-9. [DOI:10.1016/j.heares.2015.09.005]
21. Krizman J, Skoe E, Kraus N. Sex differences in auditory subcortical function. Clin Neurophysiol. 2012;123(3):590-7. [DOI:10.1016/j.clinph.2011.07.037]
22. Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J Neurosci Methods. 2012;208(2):181-9. [DOI:10.1016/j.jneumeth.2012.05.017]
23. Landis CA. Physiological and behavioral Aspects of Sleep. In: Redeker NS, McEnany GP, editors. Sleep Disorders and Sleep Promotion in Nursing Practice. 1st ed. New York: Springer Publishing Company; 2011. p. 1-18.
24. Fu Q, Wang T, Liang Y, Lin Y, Zhao X, Wan J, et al. Auditory Deficits in Patients With Mild and Moderate Obstructive Sleep Apnea Syndrome: A Speech Syllable Evoked Auditory Brainstem Response Study. Clin Exp Otorhinolaryngol. 2019;12(1):58-65. [DOI:10.4172/2155-9562.1000463]
25. Knebel JF, Jeanvoine A, Guignard F, Vesin JM, Richard C. Differences in Click and Speech Auditory Brainstem Responses and Cortical Response Patterns: A Pilot Study. J Neurol Neurophysiol. 2018;9(3):463. [DOI:10.4172/2155-9562.1000463]
26. Møller AR, Jho HD, Yokota M, Jannetta PJ. Contribution from crossed and uncrossed brainstem structures to the brainstem auditory evoked potentials: a study in humans. Laryngoscope. 1995;105(6):596-605. [DOI:10.1288/00005537-199506000-00007]
27. Akhoun I, Gallégo S, Moulin A, Ménard M, Veuillet E, Berger-Vachon C, et al. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clin Neurophysiol. 2008;119(4):922-33. [DOI:10.1016/j.clinph.2007.12.010]
28. Coffey EB, Herholz SC, Chepesiuk AM, Baillet S, Zatorre RJ. Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun. 2016;7:11070. [DOI:10.1038/ncomms11070]
29. Bidelman GM. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. Neuroimage. 2018;175:56-69. [DOI:10.1016/j.neuroimage.2018.03.060]
30. Liu LF, Palmer AR, Wallace MN. Phase-locked responses to pure tones in the inferior colliculus. J Neurophysiol. 2006;95(3):1926-35. [DOI:10.1152/jn.00497.2005]
Files | ||
Issue | Vol 33 No 3 (2024) | |
Section | Research Article(s) | |
DOI | https://doi.org/10.18502/avr.v33i3.15503 | |
Keywords | ||
Auditory brainstem response speech acoustics sleep electroencephalography |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |