Research Article

Preliminary Study: The Test Technique for the Evaluation on Spatial Navigation in the Absence of Visual Data in Healthy Individuals

Abstract

Background and Aim: Path integration refers to the capability of utilizing self-motion information produced by one’s own bodily movements to accurately determine and maintain one’s position in space. Typically, path integration mechanisms come into play when visual information is limited or absent. The objective of this study was to develop a path integration test that relies solely on self-motion cues derived from body movements, without the involvement of visual cues.
Methods: The study involved 157 volunteers (86 females and 71 males) aged between 18 and 70 years. Participants were asked to walk on a coordinated ground with their closed eyes and follow the six different commands. They were, after that, requested to return their initial position. Movement time was manually measured by the stopwatch. The distance between the original reference point and estimated starting point was recorded.
Results: The second command that showed the lowest standard deviation out of the six commands given to the participants was observed as the more reliable test among the other commands (47.51±33.75). In addition, the completion time of the second command increased with increasing age (p<0.001).
Conclusion: This study introduces an innovative spatial navigation approach utilizing the second command set. As an alternative, this command can be used to assess the human spatial navigation system.

1. Claessen MH, van der Ham IJ. Classification of navigation impairment: A systematic review of neuropsychological case studies. Neurosci Biobehav Rev. 2017;73:81-97. [DOI:10.1016/j.neubiorev.2016.12.015]
2. Baumann O, Mattingley JB. Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus. 2021;31(7):640-57. [DOI:10.1002/hipo.23313]
3. Foo P, Warren WH, Duchon A, Tarr MJ. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J Exp Psychol Learn Mem Cogn. 2005;31(2):195-215. [DOI:10.1037/0278-7393.31.2.195]
4. Koutakis P, Mukherjee M, Vallabhajosula S, Blanke DJ, Stergiou N. Path integration: effect of curved path complexity and sensory system on blindfolded walking. Gait Posture. 2013;37(2):154-8. [DOI:10.1016/j.gaitpost.2012.06.027]
5. Xie Y, Bigelow RT, Frankenthaler SF, Studenski SA, Moffat SD, Agrawal Y. Vestibular Loss in Older Adults Is Associated with Impaired Spatial Navigation: Data from the Triangle Completion Task. Front Neurol. 2017;8:173. [DOI:10.3389/fneur.2017.00173]
6. Adamo DE, Briceño EM, Sindone JA, Alexander NB, Moffat SD. Age differences in virtual environment and real world path integration. Front Aging Neurosci. 2012;4:26. [DOI:10.3389/fnagi.2012.00026]
7. Dokka K, DeAngelis GC, Angelaki DE. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object. J Neurosci. 2015;35(40):13599-607. [DOI:10.1523/JNEUROSCI.2267-15.2015]
8. Vélez-Fort M, Bracey EF, Keshavarzi S, Rousseau CV, Cossell L, Lenzi SC, et al. A Circuit for Integration of Head- and Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex. Neuron. 2018;98(1):179-91.e6. [DOI:10.1016/j.neuron.2018.02.023]
9. Zehr EP, Stein RB. What functions do reflexes serve during human locomotion? Prog Neurobiol. 1999;58(2):185-205. [DOI:10.1016/s0301-0082(98)00081-1]
10. Goldberg JM, Fernández C. Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol. 1975;80(1-2):101-10. [DOI:10.3109/00016487509121307]
11. Smith PF, Darlington CL, Zhen Y. The Effects of Complete Vestibular Deafferentation on Spatial Memory and the Hippocampus in the Rat: The Dunedin Experience. Multisens Res. 2015;28(5-6):461-85. [DOI:10.1163/22134808-00002469]
12. Etienne AS, Jeffery KJ. Path integration in mammals. Hippocampus. 2004;14(2):180-92. [DOI:10.1002/hipo.10173]
13. Taube JS. The head direction signal: origins and sensorymotor integration. Annu Rev Neurosci. 2007;30:181-207. [DOI:10.1146/annurev.neuro.29.051605.112854]
14. Bostelmann M, Lavenex P, Banta Lavenex P. Children fiveto-nine years old can use path integration to build a cognitive map without vision. Cogn Psychol. 2020;121:101307. [DOI:10.1016/j.cogpsych.2020.101307]
15. Savelli F, Knierim JJ. Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. J Exp Biol. 2019;222(Pt Suppl 1):jeb188912. [DOI:10.1242/jeb.188912]
16. Anson ER, Ehrenburg MR, Wei EX, Bakar D, Simonsick E, Agrawal Y. Saccular function is associated with both angular and distance errors on the triangle completion test. Clin Neurophysiol. 2019;130(11):2137-43. [DOI:10.1016/j.clinph.2019.08.027]
17. Laczó J, Andel R, Nedelska Z, Vyhnalek M, Vlcek K, Crutch S, et al. Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol Aging. 2017;51:67-70. [DOI:10.1016/j.neurobiolaging.2016.12.003]
18. Mokrisova I, Laczo J, Andel R, Gazova I, Vyhnalek M, Nedelska Z, et al. Real-space path integration is impaired in Alzheimer’s disease and mild cognitive impairment. Behav Brain Res. 2016;307:150-8. [DOI:10.1016/j.bbr.2016.03.052]
19. Cohen HS. Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res. 2000;10(1):7-15. [DOI:10.3233/VES-2000-10102]
20. Alpini DC, Cesarani A, Brugnoni G. Vertigo rehabilitation protocols. 1st ed. Switzerland: Springer; 2014.
21. Yoder RM, Taube JS. The vestibular contribution to the head direction signal and navigation. Front Integr Neurosci. 2014;8:32. [DOI:10.3389/fnint.2014.00032]
22. Martelli D, Prado A, Xia B, Verghese J, Agrawal SK. Development of a Virtual Floor Maze Test - Effects of Distal Visual Cues and Correlations With Executive Function in Healthy Adults. IEEE Trans Neural Syst Rehabil Eng. 2019;27(10):2229-36. [DOI:10.1109/TNSRE.2019.2938103]
23. Munion AK, Stefanucci JK, Rovira E, Squire P, Hendricks M. Gender differences in spatial navigation: Characterizing wayfinding behaviors. Psychon Bull Rev. 2019;26(6):1933-40. [DOI:10.3758/s13423-019-01659-w]
24. Coluccia E, Louse G. Gender differences in spatial orientation: A review. J Environ Psychol. 2004;24(3):329-40. [DOI:10.1016/j.jenvp.2004.08.006]
25. Gazova I, Laczó J, Rubinova E, Mokrisova I, Hyncicova E, Andel R, et al. Spatial navigation in young versus older adults. Front Aging Neurosci. 2013;5:94. [DOI:10.3389/fnagi.2013.00094]
26. Popp P, Wulff M, Finke K, Rühl M, Brandt T, Dieterich M. Cognitive deficits in patients with a chronic vestibular failure. J Neurol. 2017;264(3):554-63. [DOI:10.1007/s00415-016-8386-7]
27. van der Ham IJM, Claessen MHG. How age relates to spatial navigation performance: Functional and methodological considerations. Ageing Res Rev. 2020;58:101020. [DOI:10.1016/j.arr.2020.101020]
Files
IssueVol 33 No 2 (2024) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v33i2.14819
Keywords
Path integration spatial navigation vestibular system visual system

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Yılmaz O, Kurtuluş C, Ersin K, Gündoğdu O, Eti S, Şerbetçioğlu MB. Preliminary Study: The Test Technique for the Evaluation on Spatial Navigation in the Absence of Visual Data in Healthy Individuals. Aud Vestib Res. 2023;33(2):162-171.