Research Article

Combining Vestibular Rehabilitation and Noisy Galvanic Vestibular Stimulation for Treatment of Unilateral Vestibulopathy: A Randomized Controlled Trial

Abstract

Background and Aim: Vestibular Rehabilitation (VR) is a well-accepted treatment for Unilateral Vestibulopathy (UVP). Since noisy Galvanic Vestibular Stimulation (nGVS) improves the processing of vestibular inputs, we assessed the synergistic effects of adding nGVS to vestibular rehabilitation for the treatment of UVP.
Methods: Patients with UVP were randomly assigned into two groups receiving either VR for four weeks (VR group, n=12) or VR for four weeks combined with nGVS for three sessions (VR+nGVS group; n=12). Outcome measurements were postural control parameters measured with eyes open/closed conditions on hard/soft surfaces, Vestibulo-Ocular Reflex (VOR) gain, and Dizziness Handicap Inventory (DHI) scores that were assessed at baseline and after four weeks.
Results: All postural control parameters, mean total and subscale scores of DHI, and mean VOR gain in directions of affected canals significantly improved in both groups after interventions (p<0.05) except mean mediolateral displacement in conditions with eyes closed on hard surface and with eyes open on soft surface, mean mediolateral velocity in conditions with eyes closed on hard surface, ability to stance with eye closed condition on soft surface and mean emotional subscale of DHI in VR group. Improvements were significantly higher in postural control outcomes measured in stances with eyes closed on hard surface and with eyes open and closed on soft surface, mean VOR gains in directions of affected horizontal and anterior canals, and mean total, physical, and functional scores of DHI in VR+nGVS group (p<0.05).
Conclusion: When combined with VR, nGVS shows additional therapeutic effects in UVP patients.
Study protocol location: https://irct.ir/trial/58375
IRCT Registration Number: IRCT20160131026279N4

[1] Muelleman T, Shew M, Subbarayan R, Shum A, Sykes K, Staecker H, et al. Epidemiology of Dizzy Patient Population in a Neurotology Clinic and Predictors of Peripheral Etiology. Otol Neurotol. 2017;38(6):870-875. [DOI:10.1097/MAO.0000000000001429]
[2] Vlastarakos PV, Michailidou E, Nikolopoulosc TP. Unilateral vestibular weakness: an often under-recognized entity. Is symptom improvement feasible? Hearing Balance Commun. 2023;21(1):16-29. [DOI:10.1080/21695717.2022.2122338]
[3] Herdman SJ, Clendaniel R. Vestibular Rehabilitation. 4th ed. Phiadelphia: F. A. Davis Company; 2014.
[4] Herdman SJ, Hall CD, Delaune W. Variables associated with outcome in patients with unilateral vestibular hypofunction. Neurorehabil Neural Repair. 2012;26(2):151-62. [DOI:10.1177/1545968311407514]
[5] Herdman SJ, Blatt P, Schubert MC, Tusa RJ. Falls in patients with vestibular deficits. Am J Otol. 2000;21(6):847-51.
[6] Whitney SL, Alghadir AH, Anwer S. Recent Evidence About the Effectiveness of Vestibular Rehabilitation. Curr Treat Options Neurol. 2016;18(3):13. [DOI:10.1007/s11940-016-0395-4]
[7] Curthoys IS, Halmagyi GM. Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vestib Res. 1995;5(2):67-107. [DOI:10.3233/VES-1995-5201]
[8] Patatas OH, Ganança CF, Ganança FF. Quality of life of individuals submitted to vestibular rehabilitation. Braz J Otorhinolaryngol. 2009;75(3):387-94. [DOI:10.1016/S1808-8694(15)30657-1]
[9] Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M. Vestibular compensation and vestibular rehabilitation. Current concepts and new trends. Neurophysiol Clin. 2014;44(1):49-57. [DOI:10.1016/j.neucli.2013.10.138]
[10] Utz KS, Dimova V, Oppenländer K, Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of current data and future implications. Neuropsychologia. 2010;48(10):2789-810. [DOI:10.1016/j.neuropsychologia.2010.06.002]
[11] Wuehr M, Nusser E, Krafczyk S, Straube A, Brandt T, Jahn K, et al. Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects. Brain Stimul. 2016;9(1):109-16. [DOI:10.1016/j.brs.2015.08.017]
[12] Wardman DL, Taylor JL, Fitzpatrick RC. Effects of galvanic vestibular stimulation on human posture and perception while standing. J Physiol. 2003;551(Pt 3):1033-42. [DOI:10.1113/jphysiol.2003.045971]
[13] Scinicariello AP, Eaton K, Inglis JT, Collins JJ. Enhancing human balance control with galvanic vestibular stimulation. Biol Cybern. 2001;84(6):475-80. [DOI:10.1007/PL00007991]
[14] Smith PF. Vestibular Functions and Parkinson’s Disease. Front Neurol. 2018;9:1085. [DOI:10.3389/fneur.2018.01085]
[15] Lee S, Liu A, McKeown MJ. Current perspectives on galvanic vestibular stimulation in the treatment of Parkinson’s disease. Expert Rev Neurother. 2021;21(4):405-418. [DOI:10.1080/14737175.2021.1894928]
[16] Mulavara AP, Fiedler MJ, Kofman IS, Wood SJ, Serrador JM, Peters B, et al. Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res. 2011;210(2):303-12. [DOI:10.1007/s00221-011-2633-z]
[17] Yashima J, Kusuno M, Sugimoto E, Sasaki H. Auditory noise improves balance control by cross-modal stochastic resonance. Heliyon. 2021;7(11):e08299. [DOI:10.1016/j.heliyon.2021.e08299]
[18] Rise RM. Identifying Stochastic Resonance in Perceptual Thresholds with Auditory and Vestibular White Noise. [Dissertation]. Boulder: University of Colorado at Boulder; 2022.
[19] Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, et al. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep. 2016;6:37575. [DOI:10.1038/srep37575]
[20] Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M. Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol. 2018;265(Suppl 1):57-62. [DOI:10.1007/s00415-018-8814-y]
[21] Wuehr M, Boerner JC, Pradhan C, Decker J, Jahn K, Brandt T, et al. Stochastic resonance in the human vestibular system – Noiseinduced facilitation of vestibulospinal reflexes. Brain Stimul. 2018;11(2):261-3. [DOI:10.1016/j.brs.2017.10.016]
[22] Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, et al. Noisy Galvanic Vestibular Stimulation Sustainably Improves Posture in Bilateral Vestibulopathy. Front Neurol. 2018;9:900. [DOI:10.3389/fneur.2018.00900]
[23] Iwasaki S, Yamamoto Y, Togo F, Kinoshita M, Yoshifuji Y, Fujimoto C, et al. Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology. 2014;82(11):969-75. [DOI:10.1212/WNL.0000000000000215]
[24] Iwasaki S, Fujimoto C, Egami N, Kinoshita M, Togo F, Yamamoto Y, et al. Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul. 2018;11(4):709-15. [DOI:10.1016/j.brs.2018.03.005]
[25] Wuehr M, Nusser E, Decker J, Krafczyk S, Straube A, Brandt T, et al. Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology. 2016;86(23):2196-202. [DOI:10.1212/WNL.0000000000002748]
[26] Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol. 2021;12:736849. [DOI:10.3389/fneur.2021.736849]
[27] Carmona S, Ferrero A, Pianetti G, Escolá N, Arteaga MV, Frankel L. Galvanic vestibular stimulation improves the results of vestibular rehabilitation. Ann N Y Acad Sci. 2011;1233:E1-7. [DOI:10.1111/j.1749-6632.2011.06269.x]
[28] Adel Ghahraman M, Zahmatkesh M, Pourbakht A, Seifi B, Jalaie S, Adeli S, et al. Noisy galvanic vestibular stimulation enhances spatial memory in cognitive impairment-induced by intracerebroventricular-streptozotocin administration. Physiol Behav. 2016;157:217-24. [DOI:10.1016/j.physbeh.2016.02.021]
[29] Bagheri H, Khanmohammadi R, Olyaei G, Talebian S, Reza Hadian M, Najafi M. Video game and motor-cognitive dualtask training could be suitable treatments to improve dual-task interference in older adults. Neurosci Lett. 2021;760:136099. [DOI:10.1016/j.neulet.2021.136099]
[30] Nadimi Z, Adel Ghahraman M, Mohammadkhani G, Hoseinabadi R, Jalaie S, Malmir K, et al. Postural control during dual task in adolescent cochlear implant users under on/off-device conditions. Aud Vestib Res. 2021;30(3):183-8. [DOI:10.18502/avr.v30i3.6532]
[31] McGarvie LA, MacDougall HG, Halmagyi GM, Burgess AM, Weber KP, Curthoys IS. The Video Head Impulse Test (vHIT) of Semicircular Canal Function - Age-Dependent Normative Values of VOR Gain in Healthy Subjects. Front Neurol. 2015;6:154. [DOI:10.3389/fneur.2015.00154]
[32] Jafarzadeh S, Bahrami E, Pourbakht A, Jalaie S, Daneshi A. Validity and reliability of the Persian version of the dizziness handicap inventory. J Res Med Sci. 2014;19(8):769-75.
[33] Jafarzadeh S, Bahrami E, Pourbakht A, Jalaie S. [Review on Clinical Applications and Psychometric Properties of Dizziness Handicap Inventory in English, Persian and other Languages]. Journal of Paramedical Sciences & Rehabilitation. 2017;6(2):98-108. Persian. [DOI:10.22038/JPSR.2017.18201.1465]
[34] Lotfi Y, Farahani A, Azimiyan M, Moossavi A, Bakhshi E. Comparison of efficacy of vestibular rehabilitation and noisy galvanic vestibular stimulation to improve dizziness and balance in patients with multiple sclerosis. J Vestib Res. 2021;31(6):541-51. [DOI:10.3233/VES-201609]
[35] Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, New Jersey: 12 Lawrence Erlbaum Associates Inc.; 1988. 13.
[36] Kim HY. Statistical notes for clinical researchers: Sample size calculation 3. Comparison of several means using one-way ANOVA. Restor Dent Endod. 2016;41(3):231-4. [DOI:10.5395/rde.2016.41.3.231]
[37] Bergeron M, Lortie CL, Guitton MJ. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis. Adv Med. 2015;2015:916735. [DOI:10.1155/2015/916735]
[38] Lacour M, Bernard-Demanze L. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery. Front Neurol. 2015;5:285. [DOI:10.3389/fneur.2014.00285]
[39] Shaabani M, Lotfi Y, Karimian SM, Rahgozar M, Hooshmandi M. Short-term galvanic vestibular stimulation promotes functional recovery and neurogenesis in unilaterally labyrinthectomized rats. Brain Res. 2016;1648(Pt A):152-162. [DOI:10.1016/j.brainres.2016.07.029]
[40] Goldberg JM, Smith CE, Fernández C. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol. 1984;51(6):1236-56. [DOI:10.1152/jn.1984.51.6.1236]
[41] Kim J, Curthoys IS. Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetized guinea pig. Brain Res Bull. 2004;64(3):265-71. [DOI:10.1016/j.brainresbull.2004.07.008]
[42] Highstein SM, Goldberg JM, Moschovakis AK, Fernández C. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. J Neurophysiol. 1987;58(4):719-38. [DOI:10.1152/jn.1987.58.4.719]
[43] Lambert FM, Malinvaud D, Gratacap M, Straka H, Vidal PP. Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations. J Neurosci. 2013;33(16):6845-56. [DOI:10.1523/JNEUROSCI.4842-12.2013]
[44] Smith PF, Curthoys IS. Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Brain Res Rev. 1989;14(2):155-80. [DOI:10.1016/0165-0173(89)90013-1]
[45] Mitsutake T, Sakamoto M, Kawaguchi A, Tamari M, Horikawa E. Greater functional activation during galvanic vestibular stimulation is associated with improved postural stability: a GVS-fMRI study. Somatosens Mot Res. 2020;37(4):257-61. [DOI:10.1080/08990220.2020.1803256]
[46] Steinhardt CR, Fridman GY. Direct current effects on afferent and hair cell to elicit natural firing patterns. iScience. 2021;24(3):102205. [DOI:10.1016/j.isci.2021.102205]
[47] Eder J, Kellerer S, Amberger T, Keywan A, Dlugaiczyk J, Wuehr M, et al. Combining vestibular rehabilitation with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J Neurol. 2022;269(11):5731-7. [DOI:10.1007/s00415-022-11033-x]
[48] Bae SH, Nam GS, Kwak SH, Kim SH. Importance of High-Frequency Vestibular Function in the Prognosis of Bilateral Vestibulopathy. Clin Exp Otorhinolaryngol. 2021;14(2):192-9. [DOI:10.21053/ceo.2020.01739]
[49] Porciuncula F, Johnson CC, Glickman LB. The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res. 2012;22(5-6):283-98. [DOI:10.3233/VES-120464]
[50] Fawzy M, Khater A. Bilateral vestibulopathy treatment: update and future directions. Egypt J Otolaryngol. 2016;32(2):83-92. [DOI:10.4103/1012-5574.181082]
[51] Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):1097-118. [DOI:10.1152/jn.2002.88.3.1097]
Files
IssueVol 32 No 4 (2023) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v32i4.13591
Keywords
Unilateral peripheral vestibulopathy vestibular compensation galvanic vestibular stimulation vestibular rehabilitation postural control

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Khavarghazalani B, Adel Ghahraman M, Hoseinabadi R, Jalaie S, Kouhi A, Yazdani N. Combining Vestibular Rehabilitation and Noisy Galvanic Vestibular Stimulation for Treatment of Unilateral Vestibulopathy: A Randomized Controlled Trial. Aud Vestib Res. 2023;32(4):272-283.