Review Article

Central Representation of Speech-in-Noise Perception: A Narrative Review


Background and Aim: Speech-in-Noise (SIN) perception is one of the most important issues processed by human listeners. The purpose of speech tests is to determine the perceptual abilities of people in real life conditions; therefore, can speech tests in quiet be a valuable measure of this ability? Is the central representation of speech-in-quiet and SIN perception the same? This review study aimed to investigate the central representation of SIN perception in healthy individuals aged 14 to 60 years.
Recent Findings: Central representation of SIN perception is influenced by various peripheral factors and includes several neural processes. All auditory nerve fibers are stimulated by speech and noise. Low-frequency sounds play a much more important role than high-frequencies. The auditory nerve fibers that are stimulated by speech, respond only to fundamental frequencies (F0). The degree of neural synchronization that increases by noise and causes the simultaneous activity of these fibers, develops auditory processing. Large areas of the auditory cortex and its external parts (parietal, premotor, and mirror neurons) are stimulated. Larger groups of cortical nerve fibers are used for speech signals of the same family with significant ecological importance.
Conclusion: Central representation of SIN perception is not the same as in quiet. Speech perception tests in quiet cannot assess real-life perceptual abilities of people. SIN tests should be used routinely as a practical confirmatory test in audiology clinics. It is very necessary that the list of words and sentences required for SIN perception tests be prepared for different languages.

[1] Chandni J, Vipin Ghosh PG, Chetak KB, Aishwarya L. Maturation of speech perception in noise abilities during adolescence. Int J Pediatr Otorhinolaryngol. 2020;139:110459. [DOI:10.1016/j.ijporl.2020.110459]
[2] Scott SK, Sinex DG. Speech. In: Rees A, Palmer A, editors. The Oxford handbook of auditory science: the auditory brain. 1st ed. New York: Oxford university press; 2010. p. 193-214.
[3] Abrams D A, Kraus N. Auditory Pathway Representations of Speech Sounds in Humans. In: Katz J, Chasin M, English K, Hood LJ, Tillery KL, editors. Hand book of Clinical Audiology. 7th ed. Philadelphia: Wolters Kluwer Health. 2015. p. 527-44.
[4] Young ED. Level and spectrum. In: Rees A, Palmer A, editors. The Oxford handbook of auditory science: the auditory brain. 1st ed. New York: Oxford university press; 2010. p. 93-124.
[5] Meyer BT, Brand T, Kollmeier B. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes. J Acoust Soc Am. 2011;129(1):388-403. [DOI:10.1121/1.3514525]
[6] Angwin AJ, Wilson WJ, Ripollés P, Rodriguez-Fornells A, Arnott WL, Barry RJ, et al. White noise facilitates newword learning from context. Brain Lang. 2019;199:104699. [DOI:10.1016/j.bandl.2019.104699]
[7] Shen J, Anderson MC, Arehart KH, Souza PE. Using Cognitive Screening Tests in Audiology. Am J Audiol. 2016;25(4):319-31. [DOI:10.1044/2016_AJA-16-0032]
[8] Peelle JE, Wingfield A. The Neural Consequences of Age-Related Hearing Loss. Trends Neurosci. 2016;39(7):486-97. [DOI:10.1016/j.tins.2016.05.001]
[9] Alviandi W, Bashiruddin J, Bramantyo B, Rizky F. Words in noise audiometry in adult subjects with normal hearing. Oto Rhino Laryngologica Indonesiana. 2020;50(1):9-15. [DOI:10.32637/orli.v50i1.332]
[10] Wilson RH, Watts KL. The Words-in-Noise Test (WIN), list 3: a practice list. J Am Acad Audiol. 2012;23(2):92-6. [DOI:10.3766/jaaa.23.2.3]
[11] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077-85. [DOI:10.1523/JNEUROSCI.2845-09.2009]
[12] Vaden KI Jr, Kuchinsky SE, Ahlstrom JB, Dubno JR, Eckert MA. Cortical activity predicts which older adults recognize speech in noise and when. J Neurosci. 2015;35(9):3929-37. [DOI:10.1523/JNEUROSCI.2908-14.2015]
[13] Chupani J, Javanbakht M, Lotfi Y. Central auditory processing in bilinguals. Aud Vestib Res. 2021;30(3):160-6. [DOI:10.18502/avr.v30i3.6529]
[14] Onoda RM, Pereira LD, Guilherme A. Temporal processing and dichotic listening in bilingual and non-bilingual descendants. Braz J Otorhinolaryngol. 2006;72(6):737-46. [DOI:10.1016/S1808-8694(15)31040-5]
[15] Sanayi R, Mohamadkhani G, Pourbakht A, Jalilvand L, Jalayi S, Shokri S. Auditory temporal processing abilities in early azari-persian bilinguals. Iran J Otorhinolaryngol. 2013;25(4):227-32.
[16] Krizman J, Bradlow AR, Lam SS, Kraus N. How bilinguals listen in noise: linguistic and non-linguistic factors. Biling (Camb Engl). 2017;20(4):834-43. [DOI:10.1017/S1366728916000444]
[17] Aarabi S, Jarollahi F, Badfar S, Hoseinabadi R, Ahadi M. Speech perception in noise mechanisms. Aud Vest Res. 2016;25(4):221-6.
[18] Olano MA, Elizalde Acevedo B, Chambeaud N, Acuña A, Marcó M, Kochen S, et al. Emotional salience enhances intelligibility in adverse acoustic conditions. Neuropsychologia. 2020;147:107580. [DOI:10.1016/j.neuropsychologia.2020.107580]
[19] Rosenblum LD, Yakel DA, Green KP. Face and mouth inversion effects on visual and audiovisual speech perception. J Exp Psychol Hum Percept Perform. 2000;26(2):806-19. [DOI:10.1037//0096-1523.26.2.806]
[20] Yakel DA, Rosenblum LD, Fortier MA. Effects of talker variability on speechreading. Percept Psychophys. 2000;62(7):1405-12. [DOI:10.3758/BF03212142]
[21] Brungart DS, Simpson BD, Ericson MA, Scott KR. Informational and energetic masking effects in the perception of multiple simultaneous talkers. J Acoust Soc Am. 2001;110(5 Pt 1):2527-38. [DOI:10.1121/1.1408946]
[22] Chang YP, Fu QJ. Effects of talker variability on vowel recognition in cochlear implants. J Speech Lang Hear Res. 2006;49(6):1331-41. [DOI:10.1044/1092-4388(2006/095)]
[23] Tamati TN, Pisoni DB. Non-native listeners’ recognition of high-variability speech using PRESTO. J Am Acad Audiol. 2014;25(9):869-92. [DOI:10.3766/jaaa.25.9.9]
[24] Wingfield A, Poon LW, Lombardi L, Lowe D. Speed of processing in normal aging: effects of speech rate, linguistic structure, and processing time. J Gerontol. 1985;40(5):579-85. [DOI:10.1093/geronj/40.5.579]
[25] Tiffin S, Gordon-Hickey S. The Influence of Speech Rate on Acceptable Noise Levels. J Am Acad Audiol. 2018;29(7):596-608. [DOI:10.3766/jaaa.16159]
[26] Nabelek AK, Freyaldenhoven MC, Tampas JW, Burchfiel SB, Muenchen RA. Acceptable noise level as a predictor of hearing aid use. J Am Acad Audiol. 2006;17(9):626-39. [DOI:10.3766/jaaa.17.9.2]
[27] Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Reading and subcortical auditory function. Cereb Cortex. 2009;19(11):2699-707. [DOI:10.1093/cercor/bhp024]
[28] Wang X. The harmonic organization of auditory cortex. In: Lopez-Poveda EA, Palmer AR, Meddis R, editors. The Neurophysiological Bases of Auditory Perception. 1st ed. New York: Springer Science & Business Media; 2010. p. 211-22. [DOI:10.1007/978-1-4419-5686-6_20]
[29] Rosen S. Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans R Soc Lond B Biol Sci. 1992;336(1278):367-73. [DOI:10.1098/rstb.1992.0070]
[30] Alqattan D, Turner P. The effect of background noise on speech perception in monolingual and bilingual adults with normal hearing. Noise Health. 2021;23(110):67-74.172
[31] Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Aging affects neural precision of speech encoding. J Neurosci. 2012;32(41):14156-64. [DOI:10.1523/JNEUROSCI.2176-12.2012]
[32] Ruggles D, Shinn-Cunningham B. Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners. J Assoc Res Otolaryngol. 2011;12(3):395-405. [DOI:10.1007/s10162-010-0254-z]
[33] Meyer J, Dentel L, Meunier F. Speech recognition in natural background noise. PLoS One. 2013;8(11):e79279. [DOI:10.1371/journal.pone.0079279]
[34] Strait DL, Parbery-Clark A, O’Connell S, Kraus N. Biological impact of preschool music classes on processing speech in noise. Dev Cogn Neurosci. 2013;6:51-60. [DOI:10.1016/j.dcn.2013.06.003]
[35] Bradlow AR, Kraus N, Hayes E. Speaking clearly for children with learning disabilities: sentence perception in noise. J Speech Lang Hear Res. 2003;46(1):80-97. [DOI:10.1044/1092-4388(2003/007)]
[36] Temple E, Poldrack RA, Protopapas A, Nagarajan S, Salz T, Tallal P, et al. Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI. Proc Natl Acad Sci U S A. 2000;97(25):13907-12. [DOI:10.1073/pnas.240461697]
[37] Parbery-Clark A, Tierney A, Strait DL, Kraus N. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience. 2012;219:111-9. [DOI:10.1016/j.neuroscience.2012.05.042]
[38] Hanna-Pladdy B, MacKay A. The relation between instrumental musical activity and cognitive aging. Neuropsychology. 2011;25(3):378-86. [DOI:10.1037/a0021895]
[39] Oxenham AJ. Pitch perception. J Neurosci. 2012;32(39):13335-8. [DOI:10.1523/JNEUROSCI.3815-12.2012]
[40] Hartley DEH, King AJ. Development of the auditory pathway. In: Moore DR, Fuchs PA, Rees A, Palmer AR, Plack CJ, editors. The Oxford Handbook of Auditory Science: The auditory brain. New York: Oxford University Press; 2010. p. 361-86.
[41] Emami SF. Word Recognition Score in White Noise Test in Healthy listeners. Sch J App Med Sci. 2015;3(1A):29-33.
[42] Emami SF. Is all human hearing cochlear? ScientificWorld-Journal. 2013;2013:147160. [DOI:10.1155/2013/147160]
[43] Emami SF, Pourbakht A, Daneshi A, Sheykholeslami K, Emamjome H, Kamali M. Sound sensitivity of the saccule for low frequencies in healthy adults. ISRN Otolaryngol. 2013;2013:429680. [DOI:10.1155/2013/429680]
[44] Emami SF, Pourbakht A, Sheykholeslami K, Kamali M, Behnoud F, Daneshi A. Vestibular hearing and speech processing. ISRN Otolaryngol. 2012;2012:850629. [DOI:10.5402/2012/850629]
[45] Emami SF, Daneshi A. Vestibular hearing and neural synchronization. ISRN Otolaryngol. 2012;2012:246065. [DOI:10.5402/2012/246065]
[46] Assmann PF, Summerfield Q. The contribution of waveform interactions to the perception of concurrent vowels. J Acoust Soc Am. 1994;95(1):471-84. [DOI:10.1121/1.408342]
[47] Hornickel J, Anderson S, Skoe E, Yi HG, Kraus N. Subcortical representation of speech fine structure relates to reading ability. Neuroreport. 2012;23(1):6-9. [DOI:10.1097/WNR.0b013e32834d2ffd]
[48] Kraus N, Chandrasekaran B. Music training for the development of auditory skills. Nat Rev Neurosci. 2010;11(8):599-605. [DOI:10.1038/nrn2882]
[49] Anderson S, Parbery-Clark A, Yi HG, Kraus N. A neural basis of speech-in-noise perception in older adults. Ear Hear. 2011;32(6):750-7. [DOI:10.1097/AUD.0b013e31822229d3]
[50] Zatorre RJ, Belin P, Penhune VB. Structure and function of auditory cortex: music and speech. Trends Cogn Sci. 2002;6(1):37-46. [DOI:10.1016/S1364-6613(00)01816-7]
[51] Martin RC. Language processing: functional organization and neuroanatomical basis. Annu Rev Psychol. 2003;54:55-89. [DOI:10.1146/annurev.psych.54.101601.145201]
[52] Chandrasekaran B, Kraus N. The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology. 2010;47(2):236-46. [DOI:10.1111/j.1469-8986.2009.00928.x]
[53] Tremblay P, Brisson V, Deschamps I. Brain aging and speech perception: Effects of background noise and talker variability. Neuroimage. 2021;227:117675. [DOI:10.1016/j.neuroimage.2020.117675]
[54] Shestakova A, Brattico E, Soloviev A, Klucharev V, Huotilainen M. Orderly cortical representation of vowel categories presented by multiple exemplars. Brain Res Cogn Brain Res. 2004;21(3):342-50. [DOI:10.1016/j.cogbrainres.2004.06.011]
[55] Obleser J, Elbert T, Lahiri A, Eulitz C. Cortical representation of vowels reflects acoustic dissimilarity determined by formant frequencies. Brain Res Cogn Brain Res. 2003;15(3):207-13. [DOI:10.1016/S0926-6410(02)00193-3]
[56] Restle J, Murakami T, Ziemann U. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus. Neuropsychologia. 2012;50(8):2026-31. [DOI:10.1016/j.neuropsychologia.2012.05.001]
[57] Nuttall HE, Kennedy-Higgins D, Devlin JT, Adank P. Modulation of intra- and inter-hemispheric connectivity between primary and premotor cortex during speech perception. Brain Lang. 2018;187:74-82. [DOI:10.1016/j.bandl.2017.12.002]
[58] Heyes C, Catmur C. What Happened to Mirror Neurons? Perspect Psychol Sci. 2022;17(1):153-68. [DOI:10.1177/1745691621990638]
[59] Wong PC, Parsons LM, Martinez M, Diehl RL. The role of the insular cortex in pitch pattern perception: the effect of linguistic contexts. J Neurosci. 2004;24(41):9153-60. [DOI:10.1523/JNEUROSCI.2225-04.2004]
[60] Callan DE, Jones JA, Callan A. Multisensory and modality specific processing of visual speech in different regions of the premotor cortex. Front Psychol. 2014;5:389. [DOI:10.3389/fpsyg.2014.00389]
[61] Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000;403(6767):309-12. [DOI:10.1038/35002078]
[62] Rogers JC, Möttönen R, Boyles R, Watkins KE. Discrimination of speech and non-speech sounds following theta-burst stimulation of the motor cortex. Front Psychol. 2014;5:754. [DOI:10.3389/fpsyg.2014.00754]
[63] Hickok G, Okada K, Serences JT. Area Spt in the human planum temporale supports sensory-motor integration for speech processing. J Neurophysiol. 2009;101(5):2725-32. [DOI:10.1152/jn.91099.2008]
IssueVol 32 No 3 (2023) QRcode
SectionReview Article(s)
Speech noise perception auditory cortex brainstem

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Emami SF, Shariatpanahi E. Central Representation of Speech-in-Noise Perception: A Narrative Review. Aud Vestib Res. 2023;32(3):166-173.