Research Article

A Comparison of the Digits-in-Noise Test and Extended High Frequency Response between Formally Trained Musicians and Non-Musicians

Abstract

Background and Aim: Musical training has been hypothesised to result in enhanced Speech Perception in Noise (SPIN) abilities, but prolonged exposure to music also increases the risk for Music-Induced Hearing Loss (MIHL). The Signal-to-Noise Ratios (SNR) and the Extended High Frequency (EHF) thresholds between formally trained musicians and non- musicians were compared to determine the effect of musical training on musicians’ SPIN and hearing abilities.
Methods: This cross-sectional study included 40 musicians and 39 non-musicians 18–30 years, with mean age (SD) 22.43(2.71) years. EHF audiometry and the Digits-in-Noise (DIN) test were conducted via a smartphone.
Results: Differences found between the two groups regarding the DIN test and EHF thresholds were statistically insignificant. Musicians displayed early signs of MIHL as the musicians reported significantly more (p=0.004) instances of tinnitus than non-musicians. A statistically significant correlation was found only for the non-musician group between the 12.5 kHz threshold left and the SNR obtained in the diotic listening condition (rs=-0.465; p=0.003).
Conclusion: The results suggested that musicians did not display a significant advantage for SPIN and did not appear to have significantly poorer EHF hearing sensitivity. However, slight trends were noticeable in the musicians which gravitated more towards studies that found enhanced SPIN abilities and elevated EHF thresholds in the musician population. In the future, it may be useful to include additional speech tests (open-set) alongside the DIN test (closed-set). The present study suggests that EHF audiometry may be used for the early detection of MIHL.

[1] Parbery-Clark A, Anderson S, Kraus N. Musicians change their tune: how hearing loss alters the neural code. Hear Res. 2013;302:121-31. [DOI:10.1016/j.heares.2013.03.009]
[2] Slater J, Skoe E, Strait DL, O’Connell S, Thompson E, Kraus N. Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program. Behav Brain Res. 2015;291:244-52. [DOI:10.1016/j.bbr.2015.05.026]
[3] Wong PC, Jin JX, Gunasekera GM, Abel R, Lee ER, Dhar S. Aging and cortical mechanisms of speech perception in noise. Neuropsychologia. 2009;47(3):693-703. [DOI:10.1016/j.neuropsychologia.2008.11.032]
[4] Caldwell A, Nittrouer S. Speech perception in noise by children with cochlear implants. J Speech Lang Hear Res. 2013;56(1):13-30. [DOI:10.1044/1092-4388(2012/11-0338)]
[5] Fuller CD, Galvin JJ 3rd, Maat B, Free RH, Başkent D. The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations? Front Neurosci. 2014;8:179. [DOI:10.3389/fnins.2014.00179]
[6] Parbery-Clark A, Skoe E, Kraus N. Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci. 2009;29(45):14100-7. [DOI:10.1523/JNEUROSCI.3256-09.2009]
[7] Parbery-Clark A, Strait DL, Kraus N. Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia. 2011;49(12):3338-45. [DOI:10.1016/j.neuropsychologia.2011.08.007]
[8] Soncini F, Costa MJ. [The effect of musical practice on speech recognition in quiet and noisy situations]. Pro Fono. 2006;18(2):161-70. Portuguese. [DOI:10.1590/S0104-56872006000200005]
[9] Strait DL, Parbery-Clark A, Hittner E, Kraus N. Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang. 2012;123(3):191-201. [DOI:10.1016/j.bandl.2012.09.001]
[10] Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex. 2009;19(3):712-23. [DOI:10.1093/cercor/bhn120]
[11] Ruggles DR, Freyman RL, Oxenham AJ. Influence of musical training on understanding voiced and whispered speech in noise. PLoS One. 2014;9(1):e86980. [DOI:10.1371/journal.pone.0086980]
[12] Boebinger D, Evans S, Rosen S, Lima CF, Manly T, Scott SK. Musicians and non-musicians are equally adept at perceiving masked speech. J Acoust Soc Am. 2015;137(1):378-87. [DOI:10.1121/1.4904537]
[13] Madsen SMK, Marschall M, Dau T, Oxenham AJ. Speech perception is similar for musicians and non-musicians across a wide range of conditions. Sci Rep. 2019;9(1):10404. [DOI:10.1038/s41598-019-46728-1]
[14] Madsen SMK, Whiteford KL, Oxenham AJ. Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Sci Rep. 2017;7(1):12624. [DOI:10.1038/s41598-017-12937-9]
[15] Yeend I, Beach EF, Sharma M, Dillon H. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hear Res. 2017;353:224-36. [DOI:10.1016/j.heares.2017.07.006]
[16] Jørgensen H. Instrumental Performance Expertise and Amount of Practice among Instrumental Students in a Conservatoire. Music Educ Res. 2002;4(1):105-19. [DOI:10.1080/14613800220119804]
[17] Schmuziger N, Patscheke J, Probst R. An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry. Ear Hear. 2007;28(5):643-8. [DOI:10.1097/AUD.0b013e31812f7144]
[18] Emmerich E, Rudel L, Richter F. Is the audiologic status of professional musicians a reflection of the noise exposure in classical orchestral music? Eur Arch Otorhinolaryngol. 2008;265(7):753-8. [DOI:10.1007/s00405-007-0538-z]
[19] Zhao F, Manchaiah VK, French D, Price SM. Music exposure and hearing disorders: an overview. Int J Audiol. 2010;49(1):54-64. [DOI:10.3109/14992020903202520]
[20] Morata TC. Young people: their noise and music exposures and the risk of hearing loss. Int J Audiol. 2007;46(3):111-2. [DOI:10.1080/14992020601103079]
[21] Skoe E, Camera S, Tufts J. Noise Exposure May Diminish the Musician Advantage for Perceiving Speech in Noise. Ear Hear. 2019;40(4):782-93. [DOI:10.1097/AUD.0000000000000665]
[22] Moore BC. A review of the perceptual effects of hearing loss for frequencies above 3 kHz. Int J Audiol. 2016;55(12):707-14. [DOI:10.1080/14992027.2016.1204565]
[23] Rodríguez Valiente A, Roldán Fidalgo A, Villarreal IM, García Berrocal JR. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis. Acta Otorrinolaringol Esp. 2016;67(1):40-4. [DOI:10.1016/j.otorri.2015.02.002]
[24] Rodríguez Valiente A, Pérez Sanz C, Górriz C, Juárez A, Monfort M, García Berrocal JR, et al. [Designing a new tool for hearing exploration]. Acta Otorrinolaringol Esp. 2009;60(1):43-8. Spanish. [DOI:10.1016/S2173-5735(09)70097-3]
[25] Mishra SK, Saxena U, Rodrigo H. Extended High-frequency Hearing Impairment Despite a Normal Audiogram: Relation to Early Aging, Speech-in-noise Perception, Cochlear Function, and Routine Earphone Use. Ear Hear. 2022;43(3):822-35. [DOI:10.1097/AUD.0000000000001140]
[26] Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS One. 2016;11(9):e0162726. [DOI:10.1371/journal.pone.0162726]
[27] Lopez-Poveda EA, Barrios P. Perception of stochastically undersampled sound waveforms: a model of auditory deafferentation. Front Neurosci. 2013;7:124. [DOI:10.3389/fnins.2013.00124]
[28] Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. Int J Audiol. 2019;58(sup1):S3-S32. [DOI:10.1080/14992027.2018.1534010]
[29] Hunter LL, Monson BB, Moore DR, Dhar S, Wright BA, Munro KJ, et al. Extended high frequency hearing and speech perception implications in adults and children. Hear Res. 2020;397:107922. [DOI:10.1016/j.heares.2020.107922]57
[30] Best V, Carlile S, Jin C, van Schaik A. The role of high frequencies in speech localization. J Acoust Soc Am. 2005;118(1):353-63. [DOI:10.1121/1.1926107]
[31] Liberman MC. Hidden hearing loss. Sci Am. 2015;313(2):48-53. [DOI:10.1038/scientificamerican0815-48]
[32] Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31(38):13452-7. [DOI:10.1523/JNEUROSCI.2156-11.2011]
[33] Kikidis D, Vardonikolaki A, Zachou Z, Razou A, Pantos P, Bibas A. ABR findings in musicians with normal audiogram and otoacoustic emissions: evidence of cochlear synaptopathy? Hearing Balance Commun. 2020;18(1):36-45. [DOI:10.1080/21695717.2019.1663054]
[34] Maccà I, Scapellato ML, Carrieri M, Maso S, Trevisan A, Bartolucci GB. High-frequency hearing thresholds: effects of age, occupational ultrasound and noise exposure. Int Arch Occup Environ Health. 2015;88(2):197-211. [DOI:10.1007/s00420-014-0951-8]
[35] Couth S, Prendergast G, Guest H, Munro KJ, Moore DR, Plack CJ, et al. Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hear Res. 2020;395:108021. [DOI:10.1016/j.heares.2020.108021]
[36] Kazkayasi M, Yetiser S, Ozcelik S. Effect of musical training on musical perception and hearing sensitivity: conventional and high-frequency audiometric comparison. J Otolaryngol. 2006;35(5):343-8. [DOI:10.2310/7070.2005.0092]
[37] de Oliveira Gonçalves CG, Lacerda AB, Zeigelboim BS, Marques JM, Luders D. Auditory thresholds among military musicians: conventional and high frequency. Codas. 2013;25(2):181-7. English, Portuguese. [DOI:10.1590/S2317-17822013000200015]
[38] Malyuk H, Dunckley K. Musicians with conventional noise notches have poorer extended high frequency sensitivity. Paper presented at the National Hearing Conservation Association; 2018; Orlando: Florida.
[39] Wei W, Heinze S, Gerstner DG, Walser SM, Twardella D, Reiter C, et al. Audiometric notch and extended highfrequency hearing threshold shift in relation to total leisure noise exposure: An exploratory analysis. Noise Health. 2017;19(91):263-9. [DOI:10.4103/nah.NAH_28_17]
[40] Zhang F, Roland C, Rasul D, Cahn S, Liang C, Valencia G. Comparing musicians and non-musicians in signal-in-noise perception. Int J Audiol. 2019;58(11):717-23. [DOI:10.1080/14992027.2019.1623424]
[41] Kumar PV, Krishna R. Exploring Music Induced Auditory Processing Differences among Vocalists, Violinists and Non Musicians. Int J Health Sci Res. 2019;9(2):13-21.
[42] Ryan AF, Kujawa SG, Hammill T, Le Prell C, Kil J. Temporary and Permanent Noise-induced Threshold Shifts: A Review of Basic and Clinical Observations. Otol Neurotol. 2016;37(8):e271-5. [DOI:10.1097/MAO.0000000000001071]
[43] Bornman M, Swanepoel W, De Jager LB, Eikelboom RH. Extended High-Frequency Smartphone Audiometry: Validity and Reliability. J Am Acad Audiol. 2019;30(3):217-26. [DOI:10.3766/jaaa.17111]
[44] Potgieter JM, Swanepoel de W, Myburgh HC, Hopper TC, Smits C. Development and validation of a smartphone-based digits-in-noise hearing test in South African English. Int J Audiol. 2015;55(7):405-11. [DOI:10.3109/14992027.2016.1172269]
[45] De Sousa KC, Swanepoel W, Moore DR, Myburgh HC, Smits C. Improving Sensitivity of the Digits-In-Noise Test Using Antiphasic Stimuli. Ear Hear. 2020;41(2):442-50. [DOI:10.1097/AUD.0000000000000775]
[46] Merchant GR, Dorey C, Porter HL, Buss E, Leibold LJ. Feasibility of remote assessment of the binaural intelligibility level difference in school-age children. JASA Express Lett. 2021;1(1):014405. [DOI:10.1121/10.0003323]
[47] Brink H, Van der Walt C, Van Rensburg G. Fundamental of Research Methodology for Healthcare Professionals. 4th ed. Cape Town: Juta and Company; 2018.
[48] Peeters MJ. Practical significance: Moving beyond statistical significance. Curr Pharm Teach Learn. 2016;8(1):83-9. [DOI:10.1016/j.cptl.2015.09.001]
[49] Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear Hear. 2009;30(6):653-61. [DOI:10.1097/AUD.0b013e3181b412e9]
[50] Wolmarans J, De Sousa KC, Frisby C, Mahomed-Asmail F, Smits C, Moore DR, et al. Speech Recognition in Noise Using Binaural Diotic and Antiphasic Digits-in-Noise in Children: Maturation and Self-Test Validity. J Am Acad Audiol. 2021;32(5):315-23. [DOI:10.1055/s-0041-1727274]
[51] Swaminathan S, Schellenberg EG. Musical Competence is Predicted by Music Training, Cognitive Abilities, and Personality. Sci Rep. 2018;8(1):9223. [DOI:10.1038/s41598-018-27571-2]
[52] Hennessy S, Mack WJ, Habibi A. Speech-in-noise perception in musicians and non-musicians: A multi-level meta-analysis. Hear Res. 2022;416:108442. [DOI:10.1016/j.heares.2022.108442]
[53] MacKay D, Saylor KW. Four Faces of Fair Subject Selection. Am J Bioeth. 2020;20(2):5-19. [DOI:10.1080/15265161.2019.1701731]
[54] Dirks DD, Wilson RH. The effect of spatially separated sound sources on speech intelligibility. J Speech Hear Res. 1969;12(1):5-38. [DOI:10.1044/jshr.1201.05]
[55] Hirsh IJ. The Relation between Localization and Intelligibility. J Acoust Soc Am. 1950;22(2):196-200. [DOI:10.1121/1.1906588]
[56] Gilbert HJ, Shackleton TM, Krumbholz K, Palmer AR. The neural substrate for binaural masking level differences in the auditory cortex. J Neurosci. 2015;35(1):209-20. [DOI:10.1523/JNEUROSCI.1131-14.2015]
[57] Wong PC, Skoe E, Russo NM, Dees T, Kraus N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci. 2007;10(4):420-2. [DOI:10.1038/nn1872]
[58] Du Y, Zatorre RJ. Musical training sharpens and bonds ears and tongue to hear speech better. Proc Natl Acad Sci U S A. 2017;114(51):13579-84. [DOI:10.1073/pnas.1712223114]58
[59] McArdle RA, Wilson RH, Burks CA. Speech recognition in multitalker babble using digits, words, and sentences. J Am Acad Audiol. 2005;16(9):726-39; quiz 763-4. [DOI:10.3766/jaaa.16.9.9]
[60] Jentschke S, Koelsch S, Sallat S, Friederici AD. Children with specific language impairment also show impairment of music-syntactic processing. J Cogn Neurosci. 2008;20(11):1940-51. [DOI:10.1162/jocn.2008.20135]
[61] Tufts JB, Skoe E. Examining the noisy life of the college musician: weeklong noise dosimetry of music and non-music activities. Int J Audiol. 2018;57(sup1):S20-7. [DOI:10.1080/14992027.2017.1405289]
[62] Burns-O’Connell G, Stockdale D, Cassidy O, Knowles V, Hoare DJ. Surrounded by Sound: The Impact of Tinnitus on Musicians. Int J Environ Res Public Health. 2021;18(17):9036. [DOI:10.3390/ijerph18179036]
[63] Schmidt JH, Paarup HM, Bælum J. Tinnitus Severity Is Related to the Sound Exposure of Symphony Orchestra Musicians Independently of Hearing Impairment. Ear Hear. 2019;40(1):88-97. [DOI:10.1097/AUD.0000000000000594]
[64] Mehrparvar AH, Mirmohammadi SJ, Davari MH, Mostaghaci M, Mollasadeghi A, Bahaloo M, et al. Conventional Audiometry, Extended High-Frequency Audiometry, and DPOAE for Early Diagnosis of NIHL. Iran Red Crescent Med J. 2014;16(1):e9628. [DOI:10.5812/ircmj.9628]
[65] Sulaiman AH, Husain R, Seluakumaran K. Evaluation of early hearing damage in personal listening device users using extended high-frequency audiometry and optoacoustic emissions. Eur Arch Otorhinolaryngol. 2014;271(6):1463-70. [DOI:10.1007/s00405-013-2612-z]
[66] Salvi R, Sun W, Ding D, Chen GD, Lobarinas E, Wang J, et al. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci. 2017;10:621. [DOI:10.3389/fnins.2016.00621]
[67] Axelsson A, Lindgren F. Hearing in classical musicians. Acta Otolaryngol Suppl. 1981;377:3-74. [DOI:10.3109/00016488109108191]
[68] Ostri B, Eller N, Dahlin E, Skylv G. Hearing impairment in orchestral musicians. Scand Audiol. 1989;18(4):243-9. [DOI:10.3109/01050398909042202]
[69] Schmidt JH, Pedersen ER, Juhl PM, Christensen-Dalsgaard J, Andersen TD, Poulsen T, et al. Sound exposure of symphony orchestra musicians. Ann Occup Hyg. 2011;55(8):893-905. [DOI:10.1093/annhyg/mer055]
[70] Motlagh Zadeh L, Silbert NH, Sternasty K, Swanepoel W, Hunter LL, Moore DR. Extended high-frequency hearing enhances speech perception in noise. Proc Natl Acad Sci U S A. 2019;116(47):23753-9. [DOI:10.1073/pnas.1903315116]
[71] Strait DL, Kraus N. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Front Psychol. 2011;2:113. [DOI:10.3389/fpsyg.2011.00113]
[72] Axelsson A, Eliasson A, Israelsson B. Hearing in pop/rock musicians: a follow-up study. Ear Hear. 1995;16(3):245-53. [DOI:10.1097/00003446-199506000-00001]
Files
IssueVol 32 No 2 (2023) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v32i2.12185
Keywords
Music audiometry hearing loss noise-induced pitch discrimination sound localization

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Dreyer B, Pottas L, Soer M, Graham MA. A Comparison of the Digits-in-Noise Test and Extended High Frequency Response between Formally Trained Musicians and Non-Musicians. Aud Vestib Res. 2023;32(2):145-158.