Research Article

Music Valence Can Affect Dichotic Listening Performance

Abstract

Background and Aim: Music can regulate the activity of brain structures that play a significant role in emotions. The perceived emotion techniques such as dichotic listening clarify the relationships between auditory emotional stimuli and hemispheric asymmetries in the auditory modality. We examined the impact of pleasantness/unpleasantness of music by Acceptable Noise Level (ANL) as a subjective measure of listeners’ willingness to accept background noise.
Methods: In this study, 32 participants rated their pleasantness with about ten songs; then, we considered the effect of preferred pleasant and unpleasant music on dichotic music listening and acceptable background noise. There were six forced attention conditions to calculate ANL, followed by measuring the most comfortable level and background noise level for each condition.
Results: The pairwise comparison analyses revealed significantly higher ANL in forced attention to pleasant music than to speech (p<0.004) and unpleasant music to the left ear (p≤0.05). The mean ANLs difference in 2 groups of right ear advantage and left ear advantage showed significant intra-hemispheric differences in the forced pleasant music attention than the forced unpleasant music attention conditions (p<0.007), and forced speech conditions (p=0.001), only in the left ear advantage group. In addition, the interaction between conditions and groups showed interhemispheric asymmetry.
Conclusion: Music valence and intra- and interhemispheric differences can affect the ANL dichotic processing and, consequently, lower noise tolerance (higher ANL) in forced pleasant music attention conditions.

[1] Russell JA. A circumplex model of affect. Journal Of Pers Soc Psychol. 1980;39(6):1161-78. [DOI:10.1037/h0077714]
[2] Pouladi F, Oghabian MA, Hatami J, Zadehmohammadi A. Involved brain areas in processing of Persian classical music: An fMRI study. Procedia Soc Behav Sci. 2010;5:1124-8. [DOI:10.1016/j.sbspro.2010.07.247]
[3] Abbott A. Music, maestro, please! Nature. 2002;416(6876):12-4. [DOI:10.1038/416012a]
[4] Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci. 2014;15(3):170-80. [DOI:10.1038/nrn3666]
[5] Gainotti G. Emotions and the Right Side of the Brain. 1st ed. Cham: Springer; 2020. [DOI:10.1007/978-3-030-34090-2]
[6] Geethanjali B, Adalarasu K, Jagannath M. Music induced emotion and music processing in the brain-a review. J Clin Diagno Res. 2018;12(01):VE01 - 3. [DOI:10.7860/JCDR/2018/30384.11060]
[7] Hugdahl K, Brønnick K, Kyllingsbrk S, Law I, Gade A, Paulson OB. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: A 15O-PET study. Neuropsychologia. 1999;37(4):431-40. [DOI:10.1016/S0028-3932(98)00101-8]
[8] Hugdahl K, Davidson RJ. The asymmetrical brain. 1st ed. Cambridge: MIT press; 2004.
[9] Hoch L, Tillmann B. Laterality effects for musical structure processing: A dichotic listening study. Neuropsychology. 2010;24(5):661-6. [DOI:10.1037/a0019653]
[10] Carmon A, Nachshon I. Ear asymmetry in perception of emotional non-verbal stimuli. Acta psychol. 1973;37(6):351-7. [DOI:10.1016/0001-6918(73)90002-4]
[11] Nabelek AK, Tucker FM, Letowski TR. Toleration of background noises: Relationship with patterns of hearing aid use by elderly persons. J Speech Hear Res. 1991;34(3):679-85. [DOI:10.1044/jshr.3403.679]
[12] Lee D, Lewis JD, Johnstone PM, Plyler PN. Acceptable noise levels and preferred signal-to-noise ratios for speech and music. Ear Hear. 2021. [DOI:10.1097/AUD.0000000000001157]
[13] Harkrider AW, Smith SB. Acceptable noise level, phoneme recognition in noise, and measures of auditory efferent activity. J Am Acad Audiol. 2005;16(8):530-45. [DOI:10.3766/jaaa.16.8.2]
[14] Moore R, Gordon-Hickey S, Jones A. Most comfortable listening levels, background noise levels, and acceptable noise levels for children and adults with normal hearing. J Am Acad Audiol. 2011;22(5):286-93. [DOI:10.3766/jaaa.22.5.5]
[15] Rogers DS, Harkrider AW, Burchfield SB, Nabelek AK. The influence of listener’s gender on the acceptance of background noise. J Am Acad Audiol. 2003;14(7):372-82; quiz 401. [DOI:10.1055/s-0040-1715756]
[16] Ahn HJ, Bahng J, Lee JH. Measurement of acceptable noise level with background music. J Audiol Otol. 2015; 19(2):79-84. [DOI:10.7874/jao.2015.19.2.79]
[17] Gordon-Hickey S, Bryan MF. The effect of music genre and music-preference dimension on acceptable noise levels in listeners with normal hearing. J Am Acad Audiol. 2021. [DOI:10.1055/a-1656-5996]
[18] Gordon-Hickey S, Moore RE. Influence of music and music preference on acceptable noise levels in listeners with normal hearing. J Am Acad Audiol. 2007;18(5):417-27. [DOI:10.3766/jaaa.18.5.6]
[19] Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97-113. [DOI:10.1016/0028-3932(71)90067-4]
[20] Mahdavi ME, Aghazadeh J, Tahaei SA, Heiran F, Baghban AA. Persian randomized dichotic digits test: Development and dichotic listening performance in young adults. Aud Vestib Res. 2017;23(6):99-113.
[21] Mahdavi ME, Pourbakht A, Parand A, Jalaie S. Test-retest reliability and minimal detectable change of randomized dichotic digits in learning-disabled children: Implications for dichotic listening training. J Am Acad Audiol. 2018;29(03):223-32. [DOI:10.3766/jaaa.16134]
[22] Ahmadi A, Fathi J, keshani A, Jalilvand H, Modarresi Y, Jalaie S. [Developing and evaluating the reliability of acceptable noise level test in Persian language]. Sci J Rehabil Med. 2015;4(4):109-17. Persian.
[23] Hugdahl K. Dichotic listening: Probing temporal lobe functional integrity. In: Davidson J, Hugdahl K, editors. Brain asymmetry. Massachusetts: The MIT Press; 1996.
[24] Koch X, Dingemanse G, Goedegebure A, Janse E. Type of speech material affects acceptable noise level test outcome. Front Psychol. 2016;7:86. [DOI:10.3389/fpsyg.2016.00186]
[25] Schepman A, Rodway P, Cornmell L, Smith B, de Sa SL, Borwick C, et al. Right-ear precedence and vocal emotion contagion: The role of the left hemisphere. Laterality. 2018;23(3):290-317. [DOI:10.1080/1357650X.2017.1360902]
[26] Omar R, Henley SM, Bartlett JW, Hailstone JC, Gordon E, Sauter DA, et al. The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. Neuroimage. 2011;56(3):1814-21. [DOI:10.1016/j.neuroimage.2011.03.002]
[27] Gosselin N, Peretz I, Noulhiane M, Hasboun D, Beckett C, Baulac M, et al. Impaired recognition of scary music following unilateral temporal lobe excision. Brain. 2005; 128(Pt 3):628-40. [DOI:10.1093/brain/awh420]
[28] Gosselin N, Peretz I, Hasboun D, Baulac M, Samson S. Impaired recognition of musical emotions and facial expressions following anteromedial temporal lobe excision. Cortex. 2011;47(9):1116-25. [DOI:10.1016/j.cortex.2011.05.012]
[29] Gosselin N, Peretz I, Johnsen E, Adolphs R. Amygdala damage impairs emotion recognition from music. Neuropsychologia. 2007; 45(2):236-44. [DOI:10.1016/j.neuropsychologia.2006.07.012]
[30] Eggermont JJ. Noise and the Brain: Experience dependent developmental and adult plasticity. London: Academic Press; 2013.
Files
IssueVol 32 No 1 (2023) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/avr.v32i1.11311
Keywords
Acceptable noise level dichotic listening test music valence functional laterality

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghaheri FS, Jalilvand H, Ashayeri H, Nekoutabar R, Makkiabadi B. Music Valence Can Affect Dichotic Listening Performance. Aud Vestib Res. 2023;32(1):1-8.