Binaural interaction component in auditory evoked potentials: characteristics and potential applications in audiology

  • Roya Nicknejad Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
  • Farzaneh Zamiri Abdollahi Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
Keywords: Binaural interaction; cochlear implant; spatial processing; auditory processing


Background and Aim: Since the first report of recording the binaural interaction component (BIC) in 1970, many studies have been conducted on BIC but none of them make its way to clinical application yet. The present paper aims at reviewing the characteristics and potential applications of BIC in audiology.
Recent Findings: BIC may be a potentially sensitive objective tool in identifying subjects with auditory processing disorders and monitoring auditory training effects. It can also help effective electrode insertion in bilateral cochlear implantation. Besides, BIC has shed light on the binaural processing maturation in infants. BIC recoding faces some difficulties as it is sensitive to noise and presentation rate, and has low amplitude, especially in brainstem level. These issues might contribute to its limited clinical applications.
Conclusion: Although BIC has not been introduced as an objective tool for testing binaural processing, it has the potential to be a reliable test. Furthermore, BIC may be used in situations where no behavioral test can be conducted. Such circumstances are during cochlear implan­tation or testing uncooperative pre-school children for auditory processing or the lack of standard behavioral tests for them. Further research on BIC is highly recommended before it can gain any clinical application.


1. Zamiri Abdollahi F, Lotfi Y, Moosavi A, Bakhshi E. Binaural interaction component of middle latency response in children suspected to central auditory processing disorder. 2019;71(2):182-5. doi: 10.1007/s12070-017-1114-5
2. Delb W, Strauss DJ, Hohenberg G, Plinkert PK. The binaural interaction component (BIC) in children with central auditory processing disorders (CAPD). Int J Audiol. 2003;42(7):401-12. doi: 10.3109/14992020309080049
3. Uppunda AK, Bhat J, D'costa PE, Raj M, Kumar K. Binaural Interaction Component in Speech Evoked Auditory Brainstem Responses. J Int Adv Otol. 2015;11(2):114-7. doi: 10.5152/iao.2015.426
4. Moossavi A, Zamiri Abdollahi F, Lotfi Y. Spatial auditory processing in children with central auditory processing disorder. Aud Vestib Res. 2017;26(2):56-63,;
5. Boets B, Vandermosten M, Poelmans H, Luts H, Wouters J, Ghesquiere P. Preschool impairments in auditory processing and speech perception uniquely predict future reading problems. Res Dev Disabil. 2011;32(2):560-70. doi: 10.1016/j.ridd.2010.12.020
6. Stephen JM, Kodituwakku PW, Kodituwakku EL, Romero L, Peters AM, Sharadamma NM, et al. Delays in auditory processing identified in preschool children with FASD. Alcohol Clin Exp Res. 2012;36(10):1720-7. doi: 10.1111/j.1530-0277.2012.01769.x
7. White-Schwoch T, Carr KW, Thompson EC, Anderson S, Nicol T, Bradlow AR, et al. Auditory processing in noise: A preschool biomarker for literacy. PLoS Biol 2015;13(7):e1002196. doi: 10.1371/journal.pbio.1002196
8. Laumen G, Ferber AT, Klump GM, Tollin DJ. The physiological basis and clinical use of the binaural interaction component of the auditory brainstem response. Ear Hear 2016;37(5):e276-90. doi: 10.1097/AUD.0000000000000301
9. Wong D. Effects of unilateral and bilateral cochlear implantation on cortical activity measured by an EEG neuroimaging method in children. [Dissertation]. Toronto: Institute of Biomaterials and Biomedical Engineering University of Toronto; 2012.
10. Kelly-Ballweber D, Dobie RA. Binaural interaction measured behaviorally and electrophysiologically in young and old adults. Audiology. 1984;23(2):181-94. doi: 10.3109/00206098409072833
11. Haywood NR, Undurraga JA, Marquardt T, McAlpine D. A comparison of two objective measures of binaural processing: the interaural phase modulation following response and the binaural interaction component. Trends Hear 2015; doi: 10.1177/2331216515619039
12. Roup CM, Leigh ED. Individual differences in behavioral and electrophysiological measures of binaural processing across the adult life span. Am J Audiol. 2015;24(2):204-15. doi: 10.1044/2015_AJA-14-0017
13. Jewett DL. Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalogr Clin Neurophysiol. 1970;28(6):609-18. doi: 10.1016/0013-4694(70)90203-8
14. Brantberg K, Fransson P-A, Hansson H, Rosenhall U. Measures of the binaural interaction component in human auditory brainstem response using objective detection criteria. Scand Audiol. 1999;28(1):15-26. doi: 10.1080/010503999424879
15. Ferber AT, Benichoux V, Tollin DJ. Test-retest relia¬bility of the binaural interaction component of the auditory brainstem response. Ear Hear. 2016;37(5): 291-301. doi: 10.1097/AUD.0000000000000315
16. Benichoux V, Ferber A, Hunt S, Hughes E, Tollin D. Across Species “Natural Ablation” Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing. J Neurosci. 2018;38(40):8563-73. doi: 10.1523/JNEUROSCI.1211-18.2018
17. Tolnai S, Klump GM. Evidence for the origin of the binaural interaction component of the auditory brainstem response. Eur J Neurosci. 2019;00:1-13. doi: 10.1121/1.5036061
18. Furst M, Eyal S, Korczyn AD. Prediction of binaural click lateralization by brainstem auditory evoked potentials. Hear Res. 1990;49(1-3):347-59. doi: 10.1016/0378-5955(90)90113-4
19. Palanca-Castan N, Laumen G, Reed D, Köppl C. The binaural interaction component in barn owl (tyto alba) presents few differences to mammalian data. J Assoc Res Otolaryngol 2016;17(6):577-89. doi: 10.1007/s10162-016-0583-7
20. Culling JF, Colburn HS. Binaural sluggishness in the perception of tone sequences and speech in noise. J Acoust Soc Am. 2000;107(1):517-27. doi: 10.1121/1.428320
21. Hauth CF, Brand T. Modeling sluggishness in binaural unmasking of speech for maskers with time-varying interaural phase differences. Trends Hear. 2018;22:1-10. doi: 10.1177/2331216517753547
22. Gardi JN, Berlin CI. Binaural interaction components: their possible origins in guinea pig auditory brainstem response. Arch Otolaryngol. 1981;107(3):164-8. doi: 10.1001/archotol.1981.00790390030009
23. Wada S, Starr A. Anatomical bases of binaural interaction in auditory brain-stem responses from guinea pig. Electroencephalogr Clin Neurophysiol. 1989;72(6):535-44. doi: 10.1016/0013-4694(89)90231-9
24. Grothe B, Pecka M. The natural history of sound localization in mammals–a story of neuronal inhibition. Front Neural Circuits 2014;8:1-19. doi: 10.3389/fncir.2014.00116
25. Hartman WM, Macaulay EJ. Anatomical limits on interaural time differences: an ecological perspective. Front Neurosci. 2014;8:1-13. doi: 10.3389/fnins.2014.00034
26. Smith RC, Price SR. Modelling of human low frequency sound localization acuity demonstrates dominance of spatial variation of interaural time difference and suggests uniform just-noticeable differences in interaural time difference. PloS one. 2014;9(2):e89033. doi: 10.1371/journal.pone.0089033
27. Yin TCT. Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay RR, Popper AN. (eds). Integrative Functions in the Mammalian Auditory Pathway. Springer Handbook of Auditory Research (vol 15). NY: Springer; 2002. p. 99-159. doi: doi: 10.1007/978-1-4757-3654-0_4
28. Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B. Precise inhibition is essential for microsecond inter¬aural time difference coding. Nature. 2002;417(6888):543-7. doi: 10.1038/417543a
29. Jeffress LA. A place theory of sound localization. J Comp Physiol Psychol. 1948;41(1):35-9. doi: 10.1037/h0061495
30. Karino S, Smith PH, Yin TC, Joris PX. Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination. J Neurosci 2011;31(8):3016-31. doi: 10.1523/JNEUROSCI.5175-10.2011
31. Seidl AH, Rubel EW, Harris DM. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci. 2010;30(1):70-80. doi: 10.1523/JNEUROSCI.3464-09.2010
32. Rautenberg PL, Grothe B, Felmy F. Quantification of the three‐dimensional morphology of coincidence det¬ector neurons in the medial superior olive of gerbils during late postnatal development. J Comp Neurol. 2009;517(3):385-96. doi: 10.1002/cne.22166
33. Wrege KS, Starr A. Binaural interaction in human auditory brainstem evoked potentials. Arch Neurol. 1981;38(9):572-80. doi: 10.1001/archneur.1981.00510090066008
34. Xia J, Shinn-Cunningham B. Isolating mechanisms that influence measures of the precedence effect: Theoretical predictions and behavioral tests. J Acoust Soc Am. 2011;130(2):866-82. doi: 10.1121/1.3605549
35. Yin TC. Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 1994;14(9):5170-86.
36. Cui J, Zhu B, Fang G, Smith E, Brauth SE, Tang Y. Effect of the level of anesthesia on the auditory brainstem response in the Emei Music Frog (Babina daunchina). PloS one. 2017;12(1):e0169449. doi: 10.1371/journal.pone.0169449
37. Linnenschmidt M, Beedholm K, Wahlberg M, Højer-Kristensen J, Nachtigall PE. Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system. Proc Biol Sci. 2012;279(1736):2237-45. doi: 10.1098/rspb.2011.2465
38. Ahadi M, Pourbakht A, Homayoun Jafari A, Shirjian Z, Salar Jafarpisheh A. [Speech-evoked auditory brainstem responses in adult Persian-speakers]. Audiol. 2014;23(3):13-21. Persian.
39. Huan LH, Wahab NAA, Maamor N, Wah LO. Binaural interaction components in speech-evoked auditory brainstem response: a pilot study.In: Fifth Malaysian Audiology Scientific Conference (MASCO2018), Malay. International Journal of Allied Health Sciences. 2019;3(1):550-550.
40. Jalaei B, Azmi MHAM, Zakaria MN. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant? Brazilian journal of otorhinolaryngology. 2019;85(4):486-93. doi: 10.1016/j.bjorl.2018.04.005
41. Pratt H, Lightfoot G. Physiological Mechanism Underlying MLRs and Cortical EPs. Tremblay KL, Burkard RF (eds). Translational perspectives in auditory neuroscience: hearing across the life span- assesments and disorders. San Diego: Plural Publishing; 2012. p. 243-82.
42. McPherson DL, Starr A. Binaural interaction in auditory evoked potentials: brainstem, middle-and long-latency components. Hear Res. 1993;66(1):91-8. doi: 10.1016/0378-5955(93)90263-z
43. Zhang F, Boettcher FA. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response. J Am Acad Audiol. 2008;19(1):82-94. doi: 10.3766/jaaa.19.1.7
44. Colburn HS, Durlach NI. Models of binaural interaction. In: Careterette E, Friedman MP, editors. Handbook of perception. New York: Academic Press; 1978. p. 467-518. (Hearing; vol IV).
45. Stern RM, Colburn S. Models of binaural perception. In:Sound localization by human observers symposium. Washington: National Academy Press; 1995. P. 24-28.
46. Zaaroor M, Bleich N, Mittelman N, Pratt H. Equivalent dipoles of the binaural interaction components and their comparison with binaurally evoked human auditory 40 Hz steady-state evoked potentials. Ear Hear. 2003;24(3):248-56. doi: 10.1097/01.AUD.0000070162.03279.79
47. Dykstra AR, Burchard D, Starzynski C, Riedel H, Rupp A, Gutschalk A. Lateralization and binaural interaction of middle-latency and late-brainstem components of the auditory evoked response. J Assoc Res Otolaryngol. 2016;17(4):357-70. doi: 10.1007/s10162-016-0572-x
48. Edmonds BA, Krumbholz K. Are interaural time and level differences represented by independent or integra¬ted codes in the human auditory cortex? J Assoc Res Otolaryngol. 2014;15(1):103-14. doi: 10.1007/s10162-013-0421-0
49. Loveless N, Vasama JP, Mäkelä J, Hari R. Human auditory cortical mechanisms of sound lateralisation: III. Monaural and binaural shift responses. Hear Res. 1994;81(1-2):91-9. doi: 10.1016/0378-5955(94)90156-2
50. Jiang ZD. Binaural interaction and the effects of stimulus intensity and repetition rate in human auditory brain-stem. Electroencephalogr Clin Neurophysiol. 1996;100(6):505-16. doi: 10.1016/s0168-5597(96)96519-3
51. Parthasarathy TK, Moushegian G. Rate, frequency, and intensity effects on early auditory evoked potentials and binaural interaction component in humans. J Am Acad Audiol. 1993;4:229-37.
52. Morrongiello BA, Fenwick KD, Hillier L, Chance G. Sound localization in newborn human infants. Dev Psychobiol. 1994;27(8):519-38. doi: 10.1002/dev.420270805
53. Furst M, Bresloff I, Levine RA, Merlob PL, Attias JJ. Interaural time coincidence detectors are present at birth: evidence from binaural interaction. Hear Res. 2004;187(1-2):63-72. doi: 10.1016/s0378-5955(03)00331-9
54. McPherson DL, Tures C, Starr A. Binaural interaction of the auditory brain-stem potentials and middle latency auditory evoked potentials in infants and adults. Electroencephalogr Clin Neurophysiol 1989;74(2):124-30. doi: 10.1016/0168-5597(89)90017-8
55. Sanes DH, Walsh EJ. The development of central auditory processing. In:Rubel EW, Popper AN, Fay RR, (eds). Development of the auditory system. NY: Springer Science & Business Media; 2012. p. 271-314.
56. Lotfi Y, Moosavi A, Zamiri Abdollahi F, Bakhshi E. Auditory lateralization training effects on binaural inter¬action component of middle latency response in children suspected to central auditory processing disorder. Indian J Otolaryngol Head Neck Surg. 2019;71(1):104-8. doi: 10.1007/s12070-018-1263-1
57. Gopal KV, Pierel K. Binaural interaction component in children at risk for central auditory processing disorders. Scand Audiol. 1999;28(2):77-84. doi: 10.1080/010503999424798
58. Hu H, Kollmeier B, Dietz M. Suitability of the binaural interaction component for interaural electrode pairing of bilateral cochlear implants. Adv Exp Med Biol. 2016;894:57-64. doi: 10.1007/978-3-319-25474-6_7
59. Schebsdat E, Hessel H, Seidler H, Strauss DJ, editors. Detection of binaural interaction in free-field evoked auditory brainstem responses by time-scale represen¬tations. Conf Proc IEEE Eng Med Biol Soc; 2016: 3732-5. doi: 10.1109/EMBC.2016.7591539
60. Smith ZM, Delgutte B. Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants. J Assoc Res Otolaryngol. 2007;8(1):134-51. doi: 10.1007/s10162-006-0069-0
61. Hu H, Dietz M. Comparison of interaural electrode pairing methods for bilateral cochlear implants. Trends Hear. 2015;19:1-22. doi: 10.1177/2331216515617143
62. Van Yper LN, Vermeire K, De Vel EF, Battmer RD, Dhooge IJ. Binaural interaction in the auditory brainstem response: a normative study. Clin Neurophysiol. 2015;126(4):772-9. doi: 10.1016/j.clinph.2014.07.032
63. Clarke EM, Adams C. Binaural interaction in specific language impairment: an auditory evoked potential study. Dev Med Child Neurol. 2007;49(4):274-9. doi: 10.1111/j.1469-8749.2007.00274.x
How to Cite
Nicknejad R, Zamiri Abdollahi F. Binaural interaction component in auditory evoked potentials: characteristics and potential applications in audiology. Aud Vestib Res. 29(1):1-9.
Review Article(s)