Speech-evoked auditory brainstem response: a review of stimulation and acquisition parameters

Keywords: Speech evoked auditory brainstem response; frequency following response; complex sounds


Background and Aim: Speech-auditory brainstem response (ABR) as a new test in the field of auditory electrophysiology, examines the auditory processing of stimuli with complex acoustic structures at the subcortical level. In recent years, speech-ABR has been administered to patients with various hearing impairments and people with special auditory skills. Results of these studies are of great interest to researchers in the fields of cognitive and auditory neurosciences. In this study, because of the increasing use of this test, a review of the studies carried out on the origin of this response and the proposed protocols to stimulate, record, and analyze this electrophysiological response are presented.Recent Findings: The most common stimulus parameters used in the published articles was /da/ stimulus in 40 ms duration and 60-85 dB SPL intensity with the use of alternative polarity and rate of about 10 stimuli per second. The verified and widely-used acquisition parameters include using vertical electrode array with 6000 sweeps and a 30-3000 Hz filtering in a 60-70 ms time window.Conclusion: In determining the stimulus-record parameters of the speech-ABR test, in addition to considering the necessary minimums, the final values should always be selected based on the objectives and the study group. The unique features of this test for diagnosis and monitoring of auditory processing at supra-threshold levels, calls for comprehensive studies to formulate guidelines for the application of this test in auditory clinics but the basic points mentioned in this paper should be considered in the selection of each parameter.


1. Jewett DL, Romano MN, Williston JS. Human auditory evoked potentials: possible brain stem components detected on the scalp. Science. 1970;167(3924):1517-8.
2. Johnson KL, Nicol T, Zecker SG, Kraus N. Developmental plasticity in the human auditory brainstem. J Neurosci. 2008;28(15):4000-7. doi: 10.1523/JNEUROSCI.0012-08.2008
3. Greenberg S. Temporal neural coding of pitch and vowel quality. [dissertation]. Los Angeles: University of California; 1980.
4. Galbraith GC, Arbagey PW, Branski R, Comerci N, Rector PM. Intelligible speech encoded in the human brain stem frequency-following response. Neuroreport. 1995;6(17):2363-7.
5. Hall JW. New handbook of auditory evoked responses. Boston: Pearson Education, Inc; 2007. p. 110-21.
6. Krishnan A. Frequency-following response. In: Burkard RF, Don M, Eggermont JJ, editors. Auditory evoked potentials: basic principles and clinical application. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 313-29.
7. Wible B, Nicol T, Kraus N. Correlation between brainstem and cortical auditory processes in normal and language-impaired children. Brain. 2005;128(2):417-23. doi: 10.1093/brain/awh367
8. Kraus N, Nicol T. Brainstem origins for cortical ‘what’ and ‘where’ pathways in the auditory system. Trends in neurosciences. 2005;28(4):176-81. doi: 10.1016/j.tins.2005.02.003
9. Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N. Auditory training improves neural timing in the human brainstem. Behavioural brain research. 2005;156(1):95-103 doi: 10.1016/j.bbr.2004.05.012
10. Stebbings KA, Lesicko AM, Llano DA. The auditory corticocollicular system: molecular and circuit-level considerations. Hear res. 2014;314:51-9. doi: 10.1016/j.heares.2014.05.004
11. Ahadi M, Pourbakht A, Jafari AH, Jalaie S. Effects of stimulus presentation mode and subcortical laterality in speech-evoked auditory brainstem responses. Int J Audiol. 2014;53(4):243-9. doi: 10.3109/14992027.2013.866281
12. Rana B, Barman A. Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions. J Laryngol Otol. 2011;125(9):911-6. doi: 10.1017/S0022215111001241
13. Kouni SN, Giannopoulos S, Ziavra N, Koutsojannis C. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities. Am J Otolaryngol. 2013;34(6):646-51. doi: 10.1016/j.amjoto.2013.07.004
14. Anderson S, Parbery-Clark A, Yi H-G, Kraus N. A neural basis of speech-in-noise perception in older adults. Ear Hear. 2011;32(6):750-7. doi: 10.1097/AUD.0b013e31822229d3
15. Maruthy S, Kumar UA, Gnanateja GN. Functional interplay between the putative measures of rostral and caudal efferent regulation of speech perception in noise. J Assoc Res Otolaryngol. 2017;18(4):635-48. doi: 10.1007/s10162-017-0623-y
16. Song JH, Skoe E, Banai K, Kraus N. Perception of speech in noise: neural correlates. J Cogn Neurosci. 2011;23(9):2268-79. doi: 10.1162/jocn.2010.21556
17. Nada NM, Kolkaila EA, Gabr TA, El-Mahallawi TH. Speech auditory brainstem response audiometry in adults with sensorineural hearing loss. Egyptian journal of ear, nose, throat and allied sciences. 2016;17(2):87-94. doi: 10.1016/j.ejenta.2016.04.002
18. Rocha-Muniz CN, Mamede Carvallo RM, Schochat E. Medial olivocochlear function in children with poor speech-in-noise performance and language disorder. Int J Pediatr Otorhinolaryngol. 2017;96:116-21. doi: 10.1016/j.ijporl.2017.03.003
19. Martin JM, Billiet CR, Bellis TJ. Audiologic Assessment of CAPD. In: Geffner D, Ross-Swain D, editors. Auditory processing disorders: assessment, management, and treatment. 3rd ed. San Diego: Plural Publishing; 2018. p. 69-94.
20. Kouni SN, Papadeas ES, Varakis IN, Kouvelas HD, Koutsojannis CM. Auditory brainstem responses in dyslexia: comparison between acoustic click and ver¬bal stimulus events. J Otolaryngol. 2006;35(5):305-9.
21. Skoe E, Brody L, Theodore RM. Reading ability reflects individual differences in auditory brainstem function, even into adulthood. Brain Lang. 2017;164:25-31. doi: 10.1016/j.bandl.2016.09.003
22. Gonçalves IC, De Andrade CRF, Matas CG. Auditory processing of speech and non-speech stimuli in children who stutter: electrophysiological evidences. Brain Disord Ther. 2015;4(5):199.
23. Tahaei AA, Ashayeri H, Pourbakht A, Kamali M. Speech evoked auditory brainstem response in stuttering. Scientifica (Cairo). 2014;2014:328646. doi: 10.1155/2014/328646
24. Russo N, Zecker S, Trommer B, Chen J, Kraus N. Effects of background noise on cortical encoding of speech in autism spectrum disorders. J Autism Dev Disord. 2009;39(8):1185-96. doi: 10.1007/s10803-009-0737-0
25. Russo N, Nicol T, Trommer B, Zecker S, Kraus N. Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci. 2009;12(4):557-67. doi: 10.1111/j.1467-7687.2008.00790.x
26. Skoe E, Kraus N. Musical training heightens auditory brainstem function during sensitive periods in development. Front Psychol. 2013;4:622. doi: 10.3389/fpsyg.2013.00622
27. Kumar P, Anil SP, Grover V, Sanju HK, Sinha S. Cortical and subcortical processing of short duration speech stimuli in trained rock musicians: a pilot study. Eur Arch Otorhinolaryngol. 2017;274(2):1153-60. doi: 10.1007/s00405-016-4285-x
28. Strait DL, Kraus N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res. 2014;308:109-21. doi: 10.1016/j.heares.2013.08.004
29. Lotfi Y, Chupani J, Javanbakht M, Bakhshi E. Evaluation of speech perception in noise in Kurd-Persian bilinguals. Aud Vestib Res. 2019;28(1):36-41. doi: 10.18502/avr.v28i1.414
30. Krizman J, Marian V, Shook A, Skoe E, Kraus N. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci U S A. 2012;109(20):7877-81. doi: 10.1073/pnas.1201575109
31. Krizman J, Skoe E, Marian V, Kraus N. Bilingualism increases neural response consistency and attentional control: evidence for sensory and cognitive coupling. Brain Lang. 2014;128(1):34-40. doi: 10.1016/j.bandl.2013.11.006
32. Kraus N, Anderson S. Identifying neural signatures of auditory function. Hear J. 2015;68(1):38-40. doi: 10.1097/01.HJ.0000459742.94251.cc
33. Chandrasekaran B, Kraus N. The scalp‐recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology. 2010;47(2):236-46. doi: 10.1111/j.1469-8986.2009.00928.x
34. Russo N, Nicol T, Musacchia G, Kraus N. Brainstem responses to speech syllables. Clin Neurophysiol. 2004;115(9):2021-30. doi: 10.1016/j.clinph.2004.04.003
35. Cunningham J, Nicol T, King C, Zecker SG, Kraus N. Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex. Hearing Research. 2002;169(1-2):97-111. doi: 10.1016/S0378-5955(02)00344-1
36. Johnson KL, Nicol T, Zecker SG, Bradlow AR, Skoe E, Kraus N. Brainstem encoding of voiced consonant--vowel stop syllables. Clin Neurophysiol. 2008;119(11):2623-35. doi: 10.1016/j.clinph.2008.07.277
37. Lotfi Y, Kargar S, Javanbakht M, Biglarian A. Development, validity and reliability of the Persian version of the consonant-vowel in white noise test. Journal of Rehabilitation Sciences and Research. 2016;3(2):29-34
38. Skoe E, Kraus N. Auditory brain stem response to complex sounds: a tutorial. Ear Hear. 2010;31(3):302-24. doi: 10.1097/AUD.0b013e3181cdb272
39. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Reading and subcortical auditory function. Cereb Cortex. 2009;19(11):2699-707. doi: 10.1093/cercor/bhp024
40. Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Aging affects neural precision of speech encoding. J Neurosci. 2012;32(41):14156-64. doi: 10.1523/JNEUROSCI.2176-12.2012
41. Musacchia G, Sams M, Skoe E, Kraus N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci U S A. 2007;104(40):15894-8. doi: 10.1073/pnas.0701498104
42. Sinha SK, Basavaraj V. Speech evoked auditory brainstem responses: a new tool to study brainstem encoding of speech sounds. Indian J Otolaryngol Head Neck Surg. 2010;62(4):395-9. doi: 10.1007/s12070-010-0100-y
43. Ansari MS, Rangasayee R, Ansari MA. Neurophysio¬logical aspects of brainstem processing of speech stimuli in audiometric-normal geriatric population. J Laryngol Otol. 2017;131(3):239-244. doi: 10.1017/S0022215116009841
44. Akhoun I, Gallégo S, Moulin A, Ménard M, Veuillet E, Berger-Vachon C, et al. The temporal relationship bet¬ween speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clin Neurophysiol. 2008;119(4):922-33. doi: 10.1016/j.clinph.2007.12.010
45. Kumar K, Bhat JS, D'Costa PE, Srivastava M, Kalaiah MK. Effect of stimulus polarity on speech evoked auditory brainstem response. Audiol Res. 2014;3(1):e8. doi: 10.4081/audiores.2013.e8
46. Krizman JL, Skoe E, Kraus N. Stimulus rate and subcortical auditory processing of speech. Audiol Neurootol. 2010;15(5):332-42. doi: 10.1159/000289572
47. Hornickel J, Skoe E, Kraus N. Subcortical laterality of speech encoding. Audiol Neurootol. 2009;14(3):198-207. doi: 10.1159/000188533
48. Dabbous AO, Koura RA, Hamdy MM. Complex auditory brainstem response in normal-hearing adults using binaural versus monaural speech stimuli. The Egyptian Journal of Otolaryngology. 2017;33(4):656-62. doi: 10.4103/ejo.ejo_74_16
49. Song JH, Skoe E, Banai K, Kraus N. Training to improve hearing speech in noise: biological mecha¬nisms. Cereb Cortex. 2012;22(5):1180-90. doi: 10.1093/cercor/bhr196
50. Sanguebuche TR, Peixe BP, Bruno RS, Biaggio EPV, Garcia MV. Speech-evoked brainstem auditory res¬ponses and auditory processing skills: a correlation in adults with hearing loss. Int Arch Otorhinolaryngol. 2018;22(1):38-44. doi: 10.1055/s-0037-1603109
51. Dajani HR, Purcell D, Wong W, Kunov H, Picton TW. Recording human evoked potentials that follow the pitch contour of a natural vowel. IEEE Trans Biomed Eng. 2005;52(9):1614-8.. doi: 10.1109/TBME.2005.851499
52. Song JH, Nicol T, Kraus N. Test-retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol. 2011;122(2):346-55. doi: 10.1016/j.clinph.2010.07.009
53. Heidari A, Moossavi A, Yadegari F, Bakhshi E, Ahadi M. Effects of age on speech-in-noise identification: subjective ratings of hearing difficulties and encoding of fundamental frequency in older adults. J Audiol Otol. 2018;22(3):134-139. doi: 10.7874/jao.2017.00304
54. Rinne T, Balk MH, Koistinen S, Autti T, Alho K, Sams M. Auditory selective attention modulates activation of human inferior colliculus. J Neurophysiol. 2008;100(6):3323-7. doi: 10.1152/jn.90607.2008
55. Anderson S, Kraus N. Neural encoding of speech and music: implications for hearing speech in noise. Semin Hear. 2011;32(2):129-141. doi: 10.1055/s-0031-1277234
56. Galbraith GC, Amaya EM, de Rivera JM, Donan NM, Duong MT, Hsu JN, et al. Brain stem evoked response to forward and reversed speech in humans. Neuroreport. 2004;15(13):2057-60.
57. Reichenbach CS, Braiman C, Schiff ND, Hudspeth AJ, Reichenbach T. The auditory-brainstem response to continuous, non-repetitive speech is modulated by the speech envelope and reflects speech processing. Front Comput Neurosci. 2016;10:47. doi: 10.3389/fncom.2016.00047
58. Ramezani M, Lotfi Y, Moossavi A, Bakhshi E. Auditory brainstem response to speech in children with high functional autism spectrum disorder. Neurol Sci. 2018. doi: 10.1007/s10072-018-3594-9
59. Malayeri S, Lotfi Y, Moossavi SA, Rostami R, Faghihzadeh S. Brainstem response to speech and non-speech stimuli in children with learning problems. Hear Res. 2014;313:75-82. doi: 10.1016/j.heares.2014.04.009
60. Vander Werff KR, Burns KS. Brain stem responses to speech in younger and older adults. Ear Hear. 2011;32(2):168-80. doi: 10.1097/AUD.0b013e3181f534b5
61. Ahadi M, Pourbakht A, Jafari AH, Shirjian Z, Jafarpisheh AS. Gender disparity in subcortical encoding of binaurally presented speech stimuli: An auditory evoked potentials study. Auris Nasus Larynx. 2014;41(3):239-43. doi: 10.1016/j.anl.2013.10.010
62. Jalaei B, Azmi MHAM, Zakaria MN. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant? Braz J Otorhinolaryngol. 2018. doi: 10.1016/j.bjorl.2018.04.005
How to Cite
Moossavi A, Lotfi Y, Javanbakht M, Faghihzadeh S. Speech-evoked auditory brainstem response: a review of stimulation and acquisition parameters. Aud Vestib Res. 28(2):75-86.
Review Article(s)