The impact of music on auditory and speech processing

  • Abdollah Moossavi Department of Otolaryngology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
  • Nasrin Gohari Department of Audiology University of Social Welfare and Rehabilitation Sciences, Tehran, Iran AND Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
Keywords: Auditory processing; speech perception; music

Abstract

Background and Aim: Researchers in the fields of psychoacoustic and electrophysiology are mostly focused on demonstrating the better and different neurophysiological performance of musicians. The present study explores the impact of music upon the auditory system, the non-auditory system as well as the improvement of language and cognitive skills following listening to music or receiving music training.Recent Findings: Studies indicate the impact of music upon the auditory processing from the cochlea to secondary auditory cortex and other parts of the brain. Besides, the impact of music on speech perception and other cognitive processing is demonstrated. Some papers point to the bottom-up and some others to the top-down processing, which is explained in detail.Conclusion: Listening to music and receiving music training, in the long run, creates plasticity from the cochlea to the auditory cortex. Since the auditory path of musical sounds overlaps functionally with that of speech path, music helps better speech perception, too. Both perceptual and cognitive functions are involved in this process. Music engages a large area of the brain, so music can be used as a supplement in rehabilitation programs and helps the improvement of speech and language skills.

References

1. Brandt A, Gebrian M, Slevc LR. Music and early language acquisition. Front Psychol. 2012;3:327. doi: 10.3389/fpsyg.2012.00327
2. Wong PC, Skoe E, Russo NM, Dees T, Kraus N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci. 2007;10(4):420-2. doi: 10.1038/nn1872
3. Bermudez P, Lerch JP, Evans AC, Zatorre RJ. Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex. 2009;19(7):1583-96. doi: 10.1093/cercor/bhn196
4. Lappe C, Herholz SC, Trainor LJ, Pantev C. Cortical plasticity induced by short-term unimodal and mul¬timodal musical training. J Neurosci. 2008;28(39):9632-9. doi: 10.1523/JNEUROSCI.2254-08.2008
5. Cross I, Morley I. The evolution of music: theories, definitions and the nature of the evidence. In: Malloch S, Trevarthen C, editors. Communicative musicality: exploring the basis of human companionship. 1st ed. Oxford: Oxford University Press; 2009. p. 61-81.
6. Zatorre RJ, Salimpoor VN. From perception to pleasure: music and its neural substrates. Proc Natl Acad Sci U S A. 2013;110 Suppl 2:10430-7. doi: 10.1073/pnas.1301228110
7. Brown RM, Zatorre RJ, Penhune VB. Expert music performance: cognitive, neural, and developmental bases. Prog Brain Res. 2015;217:57-86. doi: 10.1016/bs.pbr.2014.11.021
8. Blake DT, Heiser MA, Caywood M, Merzenich MM. Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron. 2006;52(2):371-81. doi: 10.1016/j.neuron.2006.08.009
9. Kilgard MP. Harnessing plasticity to understand learning and treat disease. Trends Neurosci. 2012;35(12):715-22. doi: 10.1016/j.tins.2012.09.002
10. Anderson S, White-Schwoch T, Choi HJ, Kraus N. Partial maintenance of auditory-based cognitive training benefits in older adults. Neuropsychologia. 2014;62:286-96. doi: 10.1016/j.neuropsychologia.2014.07.034
11. Koelsch S, Schröger E, Tervaniemi M. Superior pre-attentive auditory processing in musicians. Neuroreport. 1999;10(6):1309-13.
12. Strait DL, Kraus N, Parbery-Clark A, Ashley R. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention per¬formance. Hear Res. 2010;261(1-2):22-9. doi: 10.1016/j.heares.2009.12.021
13. Kraus N, Strait DL, Parbery-Clark A. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory. Ann N Y Acad Sci. 2012;1252:100-7. doi: 10.1111/j.1749-6632.2012.06463.x
14. Moreno S, Bialystok E, Barac R, Schellenberg EG, Cepeda NJ, Chau T. Short-term music training enhances verbal intelligence and executive function. Psychol Sci. 2011;22(11):1425-33. doi: 10.1177/0956797611416999
15. Kaviani H, Mirbaha H, Pournaseh M, Sagan O. Can music lessons increase the performance of preschool children in IQ tests? Cogn Process. 2014;15(1):77-84. doi: 10.1007/s10339-013-0574-0
16. Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear Hear. 2009;30(6):653-61. doi: 10.1097/AUD.0b013e3181b412e9
17. Zendel BR, Alain C. Musicians experience less age-related decline in central auditory processing. Psychol Aging. 2012;27(2):410-7. doi: 10.1037/a0024816
18. Milovanov R, Huotilainen M, Välimäki V, Esquef PA, Tervaniemi M. Musical aptitude and second language pronunciation skills in school-aged children: neural and behavioral evidence. Brain Res. 2008;1194:81-9. doi: 10.1016/j.brainres.2007.11.042
19. Tierney A, Kraus N. Music training for the development of reading skills. Prog Brain Res. 2013;207:209-41. doi: 10.1016/B978-0-444-63327-9.00008-4
20. Chobert J, Besson M. Musical expertise and second language learning. Brain Sci. 2013;3(2):923-40. doi: 10.3390/brainsci3020923
21. Shahin AJ. Neurophysiological influence of musical training on speech perception. Front Psychol. 2011;2:126. doi: 10.3389/fpsyg.2011.00126
22. Mohammad Esmaeilzadeh S, Sharifi S, Tayarani Niknezhad H. Auditory-verbal music play therapy: an integrated approach (AVMPT). Iran J Otorhinolaryngol. 2013;25(73):197-208. doi: 10.22038/IJORL.2013.1218
23. Patel AD. Music, biological evolution, and the brain. In: Bailar M, editor. Emerging disciplines: shaping new fields of scholarly inquiry in and beyond the humanities. Houston (TX): Rice University Press;2010. p. 91-144.
24. Lonsnury-Martin BL, Martin GK. Otoacoustic emissions. In: Burkard RF, Eggermont JJ, Don M, editors. Auditory evoked potentials: basic principles and clinical application. 1st ed. Baltimore: Lippincott Williams and Wilkins; 2007. p. 159-79.
25. Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589-607. doi: 10.1097/01.aud.0000240507.83072.e7
26. Perrot X, Micheyl C, Khalfa S, Collet L. Stronger bilateral efferent influences on cochlear biomechanical activity in musicians than in non-musicians. Neurosci Lett. 1999;262(3):167-70. doi: 10.1016/S0304-3940(99)00044-0
27. Micheyl C, Collet L. Involvement of the olivocochlear bundle in the detection of tones in noise. J Acoust Soc Am. 1996;99(3):1604-10. doi: 10.1121/1.414734
28. Kumar UA, Vanaja CS. Functioning of olivocochlear bundle and speech perception in noise. Ear Hear. 2004;25(2):142-6. doi: 10.1097/01.AUD.0000120363.56591.E6
29. Micheyl C, Perrot X, Collet L. Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans. Behav Neurosci. 1997;111(4):801-7. doi: 10.1037/0735-7044.111.4.801
30. Muchnik C, Ari-Even Roth D, Othman-Jebara R, Putter-Katz H, Shabtai EL, Hildesheimer M. Reduced medial olivocochlear bundle system function in children with auditory processing disorders. Audiol Neurootol. 2004;9(2):107-14. doi: 10.1159/000076001
31. Pickles JO. An introduction to the physiology of hearing. 3rd ed. London: Academic Press; 2008.
32. Moreno S, Bidelman GM. Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear Res. 2014;308:84-97. doi: 10.1016/j.heares.2013.09.012
33. Krishnan A, Gandour JT. The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain Lang. 2009;110(3):135-48. doi: 10.1016/j.bandl.2009.03.005
34. Krishnan A, Gandour JT, Bidelman GM. Experience-dependent plasticity in pitch encoding: from brainstem to auditory cortex. Neuroreport. 2012;23(8):498-502. doi: 10.1097/WNR.0b013e328353764d
35. Galbraith GC, Bhuta SM, Choate AK, Kitahara JM, Mullen TA Jr. Brain stem frequency-following response to dichotic vowels during attention. Neuroreport. 1998;9(8):1889-93.
36. Musacchia G, Sams M, Skoe E, Kraus N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci U S A. 2007;104(40):15894-8. doi: 10.1073/pnas.0701498104
37. Elmer S, Greber M, Pushparaj A, Kühnis J4, Jäncke L. Faster native vowel discrimination learning in musicians is mediated by an optimization of mnemonic functions. Neuropsychologia. 2017;104:64-75. doi: 10.1016/j.neuropsychologia.2017.08.001
38. Strait DL, O'Connell S, Parbery-Clark A, Kraus N. Musicians' enhanced neural differentiation of speech sounds arises early in life: developmental evidence from ages 3 to 30. Cereb Cortex. 2014;24(9):2512-21. doi: 10.1093/cercor/bht103
39. Parbery-Clark A, Anderson S, Hittner E, Kraus N. Musical experience offsets age-related delays in neural timing. Neurobiol Aging. 2012;33(7):1483.e1-4. doi: 10.1016/j.neurobiolaging.2011.12.015
40. Kraus N, Slater J, Thompson EC, Hornickel J, Strait DL, Nicol T, et al. Music enrichment programs improve the neural encoding of speech in at-risk children. J Neurosci. 2014;34(36):11913-8. doi: 10.1523/JNEUROSCI.1881-14.2014
41. Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proc Natl Acad Sci U S A. 2009;106(31):13022-7. doi: 10.1073/pnas.0901123106
42. White-Schwoch T, Woodruff Carr K, Anderson S, Strait DL, Kraus N. Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. J Neurosci. 2013;33(45):17667-74. doi: 10.1523/JNEUROSCI.2560-13.2013
43. Skoe E, Nicol T, Kraus N. Cross-phaseogram: objective neural index of speech sound differentiation. J Neurosci Methods. 2011;196(2):308-17. doi: 10.1016/j.jneumeth.2011.01.020
44. Bharadwaj RA, Kleinman JE. Pathologic implications for microtubule-associated protein 2 in schizophrenia primary auditory cortex. Biol Psychiatry. 2015;78(6):359-60. doi: 10.1016/j.biopsych.2015.07.011
45. Hall JW. New handbook of auditory evoked potentials. Boston: Pearson Education Inc; 2007.
46. Shahin A, Roberts LE, Trainor LJ. Enhancement of auditory cortical development by musical experience in children. Neuroreport. 2004;15(12):1917-21.
47. Neuhaus C, Knösche TR. Processing of pitch and time sequences in music. Neurosci Lett. 2008;441(1):11-5. doi: 10.1016/j.neulet.2008.05.101
48. Hertrich I, Mathiak K, Lutzenberger W, Ackermann H. Differential impact of periodic and aperiodic speech-like acoustic signals on magnetic M50/M100 fields. Neuroreport. 2000;11(18):4017-20.
49. Tremblay KL, Kraus N. Auditory training induces asymmetrical changes in cortical neural activity. J Speech Lang Hear Res. 2002;45(3):564-72.
50. Hackett TA, Preuss TM, Kaas JH. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol. 2001;441(3):197-222.
51. Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE. Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. J Neurosci. 2003;
23(13):5545-52.
52. Marie C, Delogu F, Lampis G, Belardinelli MO, Besson M. Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. J Cogn Neurosci. 2011;23(10):2701-15. doi: 10.1162/jocn.2010.21585
53. Besson M, Chobert J, Marie C. Transfer of training between music and speech: common processing, attention, and memory. Front Psychol. 2011;2:94. doi: 10.3389/fpsyg.2011.00094
54. Reinke KS, He Y, Wang C, Alain C. Perceptual learning modulates sensory evoked response during vowel segregation. Cogn Brain Res. 2003;17(3):781-91. doi: 10.1016/S0926-6410(03)00202-7
55. Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clin Neurophysiol. 2009;120(1):128-35. doi: 10.1016/j.clinph.2008.10.005
56. Putkinen V, Tervaniemi M, Huotilainen M. Informal musical activities are linked to auditory discrimination and attention in 2-3-year-old children: an event-related potential study. Eur J Neurosci. 2013;37(4):654-61. doi: 10.1111/ejn.12049
57. Zhao TC, Kuhl PK. Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proc Natl Acad Sci U S A. 2016;113(19):5212-7. doi: 10.1073/pnas.1603984113
58. Bianchi F, Hjortkjær J, Santurette S, Zatorre RJ, Siebner HR, Dau T. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians. Neuroimage. 2017;163:398-412. doi: 10.1016/j.neuroimage.2017.07.057
59. Abrams DA, Nicol T, Zecker S, Kraus N. Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J Neurosci. 2008;28(15):3958-65. doi: 10.1523/JNEUROSCI.0187-08.2008
60. Zatorre RJ, Belin P, Penhune VB. Structure and function of auditory cortex: music and speech. Trends Cogn Sci. 2002;6(1):37-46. doi: 10.1016/S1364-6613(00)01816-7
61. Rodd JM, Davis MH, Johnsrude IS. The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cereb Cortex. 2005;15(8):1261-9. doi: 10.1093/cercor/bhi009
62. Wagner AD, Paré-Blagoev EJ, Clark J, Poldrack RA. Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron. 2001;31(2):329-38.
63. Poeppel D. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asym¬metric sampling in time’. Speech Commun. 2003;41(1):245-55. doi: 10.1016/S0167-6393(02)00107-3
64. Boemio A, Fromm S, Braun A, Poeppel D. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci. 2005;8(3):389-95. doi: 10.1038/nn1409
65. Schönwiesner M, Krumbholz K, Rübsamen R, Fink GR, von Cramon DY. Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cereb Cortex. 2006;17(2):492-9. doi: 10.1093/cercor/bhj165
66. Shapiro BE, Danly M. The role of the right hemisphere in the control of speech prosody in propositional and affective contexts. Brain Lang. 1985;25(1):19-36. doi: 10.1016/0093-934X(85)90118-X
67. Brown S, Martinez MJ, Parsons LM. Music and language side by side in the brain: a PET study of the generation of melodies and sentences. Eur J Neurosci. 2006;23(10):2791-803. doi: 10.1111/j.1460-9568.2006.04785.x
68. Stewart L, Walsh V, Frith U, Rothwell J. Transcranial magnetic stimulation produces speech arrest but not song arrest. Ann N Y Acad Sci. 2001;930:433-5.
69. Tanaka S, Kirino E. Reorganization of the thala¬mocortical network in musicians. Brain Res. 2017;1664:48-54. doi: 10.1016/j.brainres.2017.03.027
70. Bohsali AA, Triplett W, Sudhyadhom A, Gullett JM, McGregor K, FitzGerald DB, et al. Broca's area - thalamic connectivity. Brain Lang. 2015;141:80-8. doi: 10.1016/j.bandl.2014.12.001
71. Kopelman MD. What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia? Neurosci Biobehav Rev. 2015;54:46-56. doi: 10.1016/j.neubiorev.2014.08.014
72. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci. 2003;23(27):9240-5.
73. Sluming V, Barrick T, Howard M, Cezayirli E, Mayes A, Roberts N. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. Neuroimage. 2002;17(3):1613-22. doi: 10.1006/nimg.2002.1288
74. Moore E, Schaefer RS, Bastin ME, Roberts N, Overy K. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sci. 2014;4(2):405-27. doi: 10.3390/brainsci4020405
75. Steele CJ, Bailey JA, Zatorre RJ, Penhune VB. Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci. 2013;33(3):1282-90. doi: 10.1523/JNEUROSCI.3578-12.2013
76. Bailey JA, Zatorre RJ, Penhune VB. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. J Cogn Neurosci. 2014;26(4):755-67. doi: 10.1162/jocn_a_00527
77. Hutka S, Bidelman GM, Moreno S. Brain signal variability as a window into the bidirectionality between music and language processing: moving from a linear to a nonlinear model. Front Psychol. 2013;4:984. doi: 10.3389/fpsyg.2013.00984
78. Micheyl C, Delhommeau K, Perrot X, Oxenham AJ. Influence of musical and psychoacoustical training on pitch discrimination. Hear Res. 2006;219(1-2):36-47. doi: 10.1016/j.heares.2006.05.004
79. Başkent D, Gaudrain E. Musician advantage for speech-on-speech perception. J Acoust Soc Am. 2016;139(3):EL51-6. doi: 10.1121/1.4942628
80. Zendel BR, Alain C. The influence of lifelong musicianship on neurophysiological measures of concurrent sound segregation. J Cogn Neurosci. 2013;25(4):503-16. doi: 10.1162/jocn_a_00329
81. Carey D, Rosen S, Krishnan S, Pearce MT, Shepherd A, Aydelott J, et al. Generality and specificity in the effects of musical expertise on perception and cognition. Cognition. 2015;137:81-105. doi: 10.1016/j.cognition.2014.12.005
82. Vuust P, Brattico E, Seppänen M, Näätänen R, Tervaniemi M. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia. 2012;50(7):1432-43. doi: 10.1016/j.neuropsychologia.2012.02.028
83. Chobert J, François C, Velay JL, Besson M. Twelve months of active musical training in 8- to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb Cortex. 2014;24(4):956-67. doi: 10.1093/cercor/bhs377
84. Kühnis J, Elmer S, Meyer M, Jäncke L. The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: an EEG study. Neuropsychologia. 2013;51(8):1608-18. doi: 10.1016/j.neuropsychologia.2013.04.007
85. Marques C, Moreno S, Castro SL, Besson M. Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence. J Cogn Neurosci. 2007;19(9):1453-63. doi: 10.1162/jocn.2007.19.9.1453
86. Elmer S, Klein C, Kühnis J, Liem F, Meyer M, Jäncke L. Music and language expertise influence the categorization of speech and musical sounds: behavioral and electrophysiological measurements. J Cogn Neurosci. 2014;26(10):2356-69. doi: 10.1162/jocn_a_00632
87. Kühnis J, Elmer S, Meyer M, Jäncke L. Musicianship boosts perceptual learning of pseudoword-chimeras: an electrophysiological approach. Brain Topogr. 2013;26(1):110-25. doi: 10.1007/s10548-012-0237-y
88. Zendel BR, Alain C. Concurrent sound segregation is enhanced in musicians. J Cogn Neurosci. 2009;21(8):1488-98. doi: 10.1162/jocn.2009.21140
89. Tervaniemi M, Szameitat AJ, Kruck S, Schröger E, Alter K, De Baene W, et al. From air oscillations to music and speech: functional magnetic resonance imaging evidence for fine-tuned neural networks in audition. J Neurosci. 2006;26(34):8647-52. doi: 10.1523/JNEUROSCI.0995-06.2006
90. Chan AS, Ho YC, Cheung MC. Music training improves verbal memory. Nature. 1998;396(6707):128. doi: 10.1038/24075
91. Flaugnacco E, Lopez L, Terribili C, Montico M, Zoia S, Schön D. Music training increases phonological awareness and reading skills in developmental dyslexia: a randomized control trial. PLoS One. 2015;10(9):e0138715. doi: 10.1371/journal.pone.0138715
92. Särkämö T, Altenmüller E, Rodríguez-Fornells A, Peretz I. Editorial: music, brain, and rehabilitation: emerging therapeutic applications and potential neural mechanisms. Front Hum Neurosci. 2016;10:103. doi: 10.3389/fnhum.2016.00103
93. Parbery-Clark A, Skoe E, Kraus N. Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci. 2009;29(45):14100-7. doi: 10.1523/JNEUROSCI.3256-09.2009
94. Fuller CD, Galvin JJ 3rd, Maat B, Free RH, Başkent D. The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations? Front Neurosci. 2014;8:179. doi: 10.3389/fnins.2014.00179
Published
2019-05-21
How to Cite
1.
Moossavi A, Gohari N. The impact of music on auditory and speech processing. Aud Vestib Res. 28(3):134-145.
Section
Review Article(s)