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Abstract 
Background and Aim: Tinnitus, the phantom 

perception of sound, in which many cortical and 

subcortical areas are involved has become one 

of the popular subjects of neuroscience research. 

Neuroimaging studies have introduced the 

tinnitus network model to explain the involve-

ment of auditory and non-auditory areas in this 

perception. In such a model, the cognitive and 

emotional aspects of tinnitus can be interpreted 

conveniently. Therefore, this paper aimed to 

review the neural basis of tinnitus networks, 

including data from neuroimaging studies, and 

discuss the clinical implication of this concept, 

as well. 

Recent Findings: The data from neuroimaging 

studies were reviewed and discussed in order to 

complete the overall image of tinnitus network 

and its correlates such as the distress network, 

attentional network and other cognitive mecha-

nisms. In addition to the auditory system, the 

anterior cingulate cortex (ACC) and dorsolateral 

prefrontal cortex (DLPFC) were considered to 

be important hubs in tinnitus distress network, 

especially for having important connectivity 

with the other networks like attention and 

salience networks. Moreover, the top-down con-

trol of DLPFC over the other brain areas was 

regarded as the most important brain area to be 

targeted using the non-invasive interventions 

and the results were compelling. 

Conclusion: Understanding the network model 

has helped in optimizing the neuromodulation 

protocols like electrical stimulation techniques. 

Thus, the clinical implications of this model can 

be generalized to the other types of treatments 

and the outcomes might be satisfying. 
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Introduction 

Tinnitus is the phantom perception of sound, 

generated inside the auditory system, in the 

absence of any external sound source [1,2]. 

Tinnitus has a high incidence rate of 15% of the 

adult's population, 6-25% of them have serious 

distressful and problematic symptoms [3,4]. 

Chronic tinnitus is characterized by the persis-

tent conscious perception of sound with much 

distress and a resistance to treatment approa-

ches. Such a scenario might be attributed to the 
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prevention of habituation which makes the 

situation more complicated [5,6]. Due to its high 

prevalence and substantial distress, tinnitus has 

become one of the popular subjects of medical, 

behavioral and neuroscience studies [7]. 

The most common cause of tinnitus is the cen-

tral auditory deafferentation due to a cochlear 

damage. It is proposed that tinnitus is generated 

to reduce the uncertainty of the auditory envi-

ronment caused by this deafferentiation [8]. 

Many neurophysiological models were propo-

sed for tinnitus generation mechanisms, such as 

the increased spontaneous activity in the audi-

tory cortex [9], tonotopic map re-organization 

[10], and enhanced neural synchrony [11]. 

Moreover, the involvement of the efferent audi-

tory system was also discussed [12]. And the 

recent model has introduced the activation of 

overlapped co-operable networks between audi-

tory and non-auditory areas in the brain as such 

integrative model [13,14]. The heterogeneity of 

tinnitus and the variety of its related symptoms 

like sleep disorders, functional and cognitive 

problems have encouraged much research on 

the neurophysiological model. Neuroimaging 

reports highlighted the inevitable role of the 

multi-regional coupling and reciprocal interac-

tions introduced in the concept of tinnitus net-

work [15-17]. Therefore, this paper aimed to 

review the neural basis of tinnitus networks, 

including data from neuroimaging studies, and 

discuss the clinical implication of this concept, 

as well. 

 

How does the brain work as a network? 

The simplest way to explain the brain function 

is to have a specified function for each area: the 

one-to-one or area-function mapping model. 

However, the actual image is more sophisticated 

and a mapping of many-to-many area-function 

couplings can be expected; in such a model, 

several areas can contribute in one function, or 

vice versa, where one area is involved in mul-

tiple functions [18]. The basic framework of the 

model is supposed to have the network inter-

actions, while its phenotype is well represented 

by the perceptual, cognitive, emotional, and 

other functions of the brain [19]. Each brain 

network consists of multiple nodes or areas 

between which, different types of structural and 

functional connectivity are existing. The node 

with the high functional connectivity is called 

the “rich hub” [20]. Thus, by determining the 

connectivity of the hub, its impact on the beha-

vior can be predicted. From the “graph theore-

tical” concept [21], there are two types of hubs: 

the “provincial” hub which takes a central posi-

tion in the network, and the “connector” hub 

which links the separated networks together 

[22]. For instance, the posterior cingulate cortex 

(PCC) is a connector hub between the default 

mode and the cognitive networks [23]. 

More broadly, some regions of the brain have a 

high-level functional connectivity with the 

majority of other regions. The higher the func-

tional connectivity of the region, the greater 

impact on behavior it should have [20]. That is, 

a lesion in such area may lead to a wide 

spectrum of behavioral disorders. On the other 

hand, targeting this area with neuromodulation 

techniques can be more advantageous than 

targeting the other hubs in the same network. 

Lastly, even the rich hub of the network can be 

affected or modulated by the function of another 

node/hub on the same network or another conn-

ected network. For example, the dorsal anterior 

cingulate cortex (dACC) is a provincial hub in 

the distress network while its function can be 

modulated by the function of the dorsolateral 

prefrontal cortex (DLPFC), the latter is a rich 

hub in many other networks like attention 

network [24-26]. 

 

Tinnitus perception network and its correlates 

It is axiomatic that the auditory network (the 

auditory cortex) is involved in tinnitus genera-

tion and perception. However, the role of  

the peripheral auditory system, the sub-cortical 

regions, as well as the primary and secondary 

auditory cortex and their correlates is not com-

pletely understood [27]. De Ridder et al. intro-

duced a proposed tinnitus core network con-

sisted of the auditory cortex, ventromedial pre-

frontal cortex (vmPFC), inferior parietal area 

and the parahippocampus (Fig. 1) [16]. These 

regions represent the minimal amount of brain 
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areas required for tinnitus generation and per-

ception [16]. Electroencephalography (EEG) 

studies have revealed increased oscillatory pow-

er in theta band in the auditory cortex nested in 

gamma band hyperactivity [28-30]. The diffe-

rentiation of the central auditory structures ari-

sing from the cochlear nerve injury would tri-

gger important alterations in the auditory path-

ways and can lead to the sensation of tinnitus 

[31]. The pathological theta–gamma rhythm has 

been attributed to this differentiation leading to 

a prediction error between the sensed and per-

ceived auditory input and gives rise to the tinni-

tus perception [32]. Moreover, a reduced alpha 

power has been frequently reported in tinnitus 

EEG studies [33,34]. On the other hand, the pre-

diction error has been linked to the decreased 

alpha power and the later has been linked to the 

decrease in sensory updating that leads to such 

error [32,35]. Thus, the auditory network is inv-

olved in generating the phantom percept of sou-

nd which needs to be brought into consci-

ousness in order to reach the cognitive proce-

ssing cycles; and these processing cycles give to 

the phantom percept its loudness, annoyance, 

and related-distress. Thereby, a network that 

consists of the posterior cingulate cortex (PCC), 

insular cortex and amygdala is called the sali-

ence network [36], which receives the phantom 

percept and yields its saliency then introduce it 

to the attention network through the PCC conn-

ections [23]. 

 

The role of attention in the modulation of tinni-

tus perception 

The attention network, in turn, is involved in 

Fig. 1. Brain networks involved in generating and modulating tinnitus perception and related 

distress. Tinnitus perception network consists of the auditory cortex, the infra-parietal sulcus (IPS), 

the ventromedial prefrontal cortex (vmPFC) and the parahippocampus (PHC). Tinnitus distress 

network consists of the dorsal anterior cingulate cortex (dACC), amygdala (Amyg), parahippo-

campus and the right DLPFC and OFC for stress processing and left DLPFC and OFC for depre-

ssive feelings. The dorsal attention network shows activated connectivity between the frontal eye 

fields (FEF) and the right infra-parietal sulcus. The default mode network shows disruption of 

functional connectivity between the medial prefrontal cortex (mPFC), the posterior cingulate cortex 

(PCC) and the bilateral precuneus. 



174                                                                                                    Tinnitus networks and its clinical implications 

Aud Vestib Res (2018);27(4):171-178.                                                                                      http://avr.tums.ac.ir 

alerting and orienting the patient`s attention 

towards the sound ringing in his head, and reg-

ulates its emotional response through connec-

tions to the tinnitus distress network, that 

impede the habituation process; such functional 

connectivity is guaranteed by the parahippocam-

pus [17]. Two important networks are involved 

in the modulation of tinnitus perception, they 

are the default mode network (DMN) and  

the dorsal attention network (Fig. 1) [37]. The 

default mode network consists of the medial 

prefrontal cortex, the posterior cingulate cortex, 

and the precuneus; while the dorsal attention 

network consists of the frontal eye fields and the 

right infra-parietal cortex [17]. The two net-

works have an anti-correlated relationship that 

is: when the DMN network becomes active the 

dorsal attention network is deactivated, and vice 

versa [38]. Some studies revealed a connectivity 

disruption between the DMN important hubs 

that means: the tinnitus patients cannot reach the 

actual resting state and instead they have a 

constant activation of the dorsal attention net-

work that impels them attending to their tinnitus 

[39]. Modulating such abnormal functional con-

nectivity can be surprisingly helpful. 

 

Tinnitus distress network 

The recent EEG studies have used sLORETA, 

standardized low-resolution brain electromagne-

tic tomography analysis, for source analysis and 

defining the functional connectivity between the 

brain regions of interest [40]. The results of 

these studies alongside the functional magnetic 

resonance imaging (fMRI) studies revealed the 

relation between tinnitus related-distress and the 

increased power of beta band in the anterior 

cingulate cortex (ACC), in addition, the amount 

of distress was correlated to the alpha band acti-

vity in several brain areas that form the distress 

network [40]. This network consists of the 

amygdala [41], ACC [42], insula [43] and 

parahippocampus [44]. These hubs are inter-

connected and overlapped functionally with the 

previously discussed networks [45]. Moreover, 

other studies have reported increased beta band 

connectivity between the precuneus and the 

orbitofrontal cortex (OFC) and also DLPFC 

[46,47]. These frontal areas showed some late-

rality for emotional processing: the right OFC 

and DLPFC related to the distress network 

while the left side linked to the depression 

network [48]. As a conclusion, there is a defined 

network for emotional processing in tinnitus 

patients known as the tinnitus distress network. 

This network demonstrated two processing 

lines: one for the stressful feelings and the other 

for the depressive ones. The overlapping hubs in 

the two lines are the parahippocampus, amyg-

dala, and the ACC, while they dissociate in the 

right and left frontal areas (Fig.1). 

The dorsal anterior cingulate cortex is involved 

in the negative effects caused by tinnitus [24], 

chronic pain [49,50] and also the post-traumatic 

stress disorder [51]. Furthermore, the DLPFC 

has modulatory top-down effects on auditory 

processing [52,53], auditory memory [54,55], 

and attention [26]. It has been demonstrated  

that the impaired top-down cognitive control  

of DLPFC may have a key role in tinnitus per-

sistence and interfere with habituation mecha-

nisms leading to increased tinnitus distress [56]. 

In addition, significant positive correlations 

were obtained between the activity of these hubs 

and the subjectively perceived distress using 

tinnitus questionnaire (TQ) [24], and tinnitus 

handicap inventory (THI) [57]. Thus, the ACC 

and DLPFC seem to be the key hubs in tinnitus 

distress network, especially for having impor-

tant connectivity with the other networks invol-

ved like the attention network and the auditory 

processing network. It is notable that the top-

down control of the DLPFC over the other 

regions makes it the most important connecting 

area between tinnitus related networks and 

consequently introduces it as the area of choice 

to be targeted using the non-invasive neuromo-

dulation techniques [56,58]. 

 

The role of memory mechanisms 

As the attentional and emotional processing was 

proposed to be mandatory in tinnitus persistence 

and suffering, the memory mechanisms as other 

aspects of cognition are likewise of crucial imp-

ortance. The parahippocampus is involved in the 

prevention of the natural habituation process 
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through a constant updating of the phantom 

percept [44]. The memory network consists of 

the parahippocampus, hippocampus and the 

amygdala [36]. It has important overlap with the 

auditory perceptual network and the distress 

network, in addition to rich functional connecti-

vity with the ACC, DLPFC, insula and auditory 

cortex, which might interpret the relation bet-

ween the hippocampal area and the cognitive 

dysfunction in tinnitus [59]. On the other hand, 

the functional connectivity analysis revealed the 

relation between the hippocampus/parahippo-

campus and the hypothalamus [60]. Such conn-

ections with the autonomic nervous system 

centers can interpret the role of this system in 

modulating some of the functional and emo-

tional components of tinnitus distress and also 

explain how the patient can control this distress 

by controlling the autonomic system through 

relaxation strategies for example [36]. 

 

Discussion and clinical implications 

Our previous review has pointed out the role of 

neuroimaging techniques in optimizing the use 

of non-invasive neuromodulation, transcranial 

electrical stimulation in particular, for the man-

agement of tinnitus [61]. In this review, we 

discussed tinnitus networks in sight of neu-

roimaging results and demonstrated how the 

brain areas are functioning in the network 

manner. Rich hubs in the auditory system, lim-

bic system, and the frontal cortex are inter-

connected with each other and proposed to 

contribute to the tinnitus perception and its cog-

nitive aspects. 

As the brain is working as a complex network,  

it is beneficial to treat the brain functional 

disorders in the light of the network model.  

The clinical implications of this model are  

very important. The goal is to modulate the 

abnormal activity of the tinnitus networks. This 

goal can be achieved through neuromodulation 

techniques or other approaches. Based on the 

principle of the network science we can expect 

that targeting any hub in a network may be 

useful in modulating the whole system [62]. 

Moreover, by targeting the rich hub or provi-

ncial hub in the network the results may be 

much desirable through modulating more than 

one involved network. The reports from the 

transcranial magnetic stimulation [58,63] and 

transcranial electrical stimulation [64,65] stu-

dies had corroborated this notion. Furthermore, 

the multisite approach may also be the best 

choice for treating distressful tinnitus; for ins-

tance, targeting the prefrontal and auditory 

cortex in sequence, have reported being more 

effective in reducing both tinnitus loudness and 

distress in comparison to the stimulation of pre-

frontal tDCS, transcranial direct current stim-

ulation,
 
 alone [66], or auditory tRNS, trans-

cranial random noise stimulation
 
 alone [67]. 

The ultimate role is to find the appropriate 

region to be targeted depending on the neuro-

imaging data. As a future perspective, in order 

to utilize such important findings, further stu-

dies should provide a user-friendly tool for 

clinicians as an objective diagnostic tool; in 

which the clinician can find out which features 

are necessary for tinnitus assessment and conse-

quently choosing the best intervention by rec-

ording EEG from the least number of elec-

trodes, six electrodes for example two frontal, 

two parietal and two auditory like the neuro-

feedback montage. However, to reach this goal 

much causal research is needed and the study of 

effective connectivity is highly recommended. 

Effective connectivity modeling enables one to 

define the direction of effect between regions 

and thereupon attains the improved vision of the 

flow of signals through these networks. 

Finally, the network model has been well 

correlated with the non-invasive neuromodula-

tion techniques, and the results are compelling. 

We hope to generalize this concept to the other 

models of treatment and we expect to have 

satisfying outcomes. For example, we can target 

the distress and emotional network activity by 

means of counseling or cognitive behavioral 

therapy. Also, it is rational that relaxation tech-

niques can regulate the autonomic nervous 

system and thereupon the distress network thr-

ough its connection to the limbic system. Lastly, 

the modulation of attention networks by means 

of integrative and distractive strategies is ano-

ther example which has been investigated in 
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many studies with significant results, such stra-

tegies can be applied simply through modifying 

the patient lifestyle to be more active and 

engaging [68]. However, in order to set up the 

guidelines for such algorithms, more studies are 

still needed. 

 

Conclusion 

Understanding the tinnitus network model can 

be helpful in optimizing the treatment strategies. 

The involvement of auditory areas in connection 

with the prefrontal area, the cingulate cortex, 

and the limbic system makes it necessary to 

consider all these systems in the management 

approach. 
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